1,176 research outputs found

    Simulation study of spatio-temporal correlations of earthquakes as a stick-slip frictional instability

    Full text link
    Spatio-temporal correlations of earthquakes are studied numerically on the basis of the one-dimensional spring-block (Burridge-Knopoff) model. As large events approach, the frequency of smaller events gradually increases, while, just before the mainshock, it is dramatically suppressed in a close vicinity of the epicenter of the upcoming mainshock, a phenomenon closely resembling the ``Mogi doughnut'

    Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    Get PDF
    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) (1Δ←1Σ+) transition, with a new weak transition assigned to (1Σ−←1Σ+) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to 1Σ+ and 1Π transitions. Based on our recent measurements of differential cross sections for the optically allowed (1Σ+ and 1Π) transitions of COS by electron impact, the optical oscillator strength f0 value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

    Power Laws, Precursors and Predictability During Failure

    Full text link
    We investigate the dynamics of a modified Burridge-Knopoff model by introducing a dissipative term to mimic the bursts of acoustic emission (AE) from rock samples. The model explains many features of the statistics of AE signals observed in experiments such as the crossover in the exponent value from relatively small amplitude AE signals to larger regime, and their dependence on the pulling speed. Significantly, we find that the cumulative energy dissipated identified with acoustic emission can be used to predict a major slip event. We also find a data collapse of the acoustic activity for several major slip events describable by a universal stretched exponential with corrections in terms of time-to-failure.Comment: 7 pages, 6 figures, Final version with minor change

    Elastic differential cross sections for C4F6 isomers in the 1.5-200 eV energy electron impact: Similarities with six fluorine containing molecules and evidence of F-atom like scattering

    Get PDF
    11 págs.; 4 figs.; 4 tabs.© 2014 AIP Publishing LLC. We report absolute elastic differential cross sections for electron interactions with the C4F6 isomers, hexafluoro-1,3-butadiene (1,3-C4F6), hexafluoro-2-butyne (2-C4F6), and hexafluorocyclobutene (c-C4F6). The incident electron energy range is 1.5-200 eV, and the scattered electron angular range for the differential measurements varies from 15° to 150°. In all cases the absolute scale of the differential cross section was set using the relative flow technique, with helium as the reference species. Atomic-like behaviour in these scattering systems is shown here for the first time, and is further investigated by comparing the elastic cross sections for the C4F6 isomers with other fluorinated molecules, such as SF6 and CnF6 (n = 2, 3, and 6). We note that for all the six-F containing molecules, the scattering process for electron energies above 30 eV is indistinguishable. Finally, we report results for calculations of elastic differential cross sections for electron scattering from each of these isomers, within an optical potential method and assuming a screened corrected independent atom representation. The level of agreement between these calculations and our measurements is found to be quite remarkable in all cases.F.B. and G.G. acknowledge the partial financial support from the Spanish Ministerio de Economia y Competitividad (Project No. FIS 2012-31230). This work forms part of the EU/ESF COST Action CM0805 programme “The Chemical Cosmos”.Peer Reviewe

    Anthropogenic and natural ground deformation in the Hengill geothermal area, Iceland

    Get PDF
    We investigate crustal deformation due to the extraction of water and steam from a high-enthalpy geothermal reservoir; a common occurrence, yet not well understood. The cause of this deformation can be a change in pressure or in temperature in the reservoir, both of which can be caused by extraction or injection of geothermal fluids. Our study area, the Hengill mountains in SW Iceland, is an active volcanic center and a plate triple junction that hosts two power plants producing geothermal energy. This combination of natural and anthropogenic processes causes a complex displacement field at the surface. We analyze geodetic data—Global Navigation Satellite System and Interferometric Synthetic Aperture Radar—to obtain the surface velocity field, which we then simulate using an inverse modeling approach. We focus on the deformation around the geothermal power plants but need to model the regional tectonic and volcanic deformation as well, because the signals are overlapping. We find that plate motion and a deep contracting body can explain the broad scale signal in the area. Local deformation near the two power plants, Hellisheidi and Nesjavellir, can be explained by extraction of geothermal fluids. We estimate reservoirs extending from 0.6 to 3.0 km depth at Hellisheidi, and 1.0 to 3.0 km depth at Nesjavellir for observed pressure decrease rates of 0.25 MPa/yr and 0.1 MPa/yr, respectively. We find that the main cause for the subsidence in the geothermal area is the observed pressure drawdown

    Bloch oscillations of magnetic solitons in anisotropic spin-1/2 chains

    Full text link
    We study the quantum dynamics of soliton-like domain walls in anisotropic spin-1/2 chains in the presence of magnetic fields. In the absence of fields, domain walls form a Bloch band of delocalized quantum states while a static field applied along the easy axis localizes them into Wannier wave packets and causes them to execute Bloch oscillations, i.e. the domain walls oscillate along the chain with a finite Bloch frequency and amplitude. In the presence of the field, the Bloch band, with a continuum of extended states, breaks up into the Wannier-Zeeman ladder -- a discrete set of equally spaced energy levels. We calculate the dynamical structure factor in the one-soliton sector at finite frequency, wave vector, and temperature, and find sharp peaks at frequencies which are integer multiples of the Bloch frequency. We further calculate the uniform magnetic susceptibility and find that it too exhibits peaks at the Bloch frequency. We identify several candidate materials where these Bloch oscillations should be observable, for example, via neutron scattering measurements. For the particular compound CoCl_2.2H_2O we estimate the Bloch amplitude to be on the order of a few lattice constants, and the Bloch frequency on the order of 100 GHz for magnetic fields in the Tesla range and at temperatures of about 18 Kelvin.Comment: 31 single-spaced REVTeX pages, including 7 figures embedded with eps

    A dominant function of p38 mitogen-activated protein kinase signaling in receptor activator of nuclear factor-κB ligand expression and osteoclastogenesis induction by Aggregatibacter actinomycetemcomitans and Escherichia coli lipopolysaccharide

    Full text link
    Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-κB ligand (RANKL) expression by murine periodontal ligament cells. Material and Methods:  Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans . The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression. Results:  Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL. Conclusion:  Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65788/1/j.1600-0765.2007.01013.x.pd
    corecore