111 research outputs found

    The Great American Biotic Interchange: Dispersals, Tectonics, Climate, Sea Level and Holding Pens

    Get PDF
    The biotic and geologic dynamics of the Great American Biotic Interchange are reviewed and revised. Information on the Marine Isotope Stage chronology, sea level changes as well as Pliocene and Pleistocene vegetation changes in Central and northern South America add to a discussion of the role of climate in facilitating trans-isthmian exchanges. Trans-isthmian land mammal exchanges during the Pleistocene glacial intervals appear to have been promoted by the development of diverse non-tropical ecologies

    Investigation of the Origin and Spread of a Mammalian Transposable Element Based on Current Sequence Diversity

    Get PDF
    Almost half the human genome consists of mobile DNA elements, and their analysis is a vital part of understanding the human genome as a whole. Many of these elements are ancient and have persisted in the genome for tens or hundreds of millions of years, providing a window into the evolution of modern mammals. The Golem family have been used as model transposons to highlight computational analyses which can be used to investigate these elements, particularly the use of molecular dating with large transposon families. Whole-genome searches found Golem sequences in 20 mammalian species. Golem A and B subsequences were only found in primates and squirrel. Interestingly, the full-length Golem, found as a few copies in many mammalian genomes, was found abundantly in horse. A phylogenetic profile suggested that Golem originated after the eutherian–metatherian divergence and that the A and B subfamilies originated at a much later date. Molecular dating based on sequence diversity suggests an early age, of 175 Mya, for the origin of the family and that the A and B lineages originated much earlier than expected from their current taxonomic distribution and have subsequently been lost in some lineages. Using publically available data, it is possible to investigate the evolutionary history of transposon families. Determining in which organisms a transposon can be found is often used to date the origin and expansion of the families. However, in this analysis, molecular dating, commonly used for determining the age of gene sequences, has been used, reducing the likelihood of errors from deleted lineages

    Genes flanking Xist in mouse and human are separated on the X chromosome in American marsupials

    Get PDF
    X inactivation, the transcriptional silencing of one of the two X chromosomes in female mammals, achieves dosage compensation of X-linked genes relative to XY males. In eutherian mammals X inactivation is regulated by the X-inactive specific transcript (Xist), a cis-acting non-coding RNA that triggers silencing of the chromosome from which it is transcribed. Marsupial mammals also undergo X inactivation but the mechanism is relatively poorly understood. We set out to analyse the X chromosome in Monodelphis domestica and Didelphis virginiana, focusing on characterizing the interval defined by the Chic1 and Slc16a2 genes that in eutherians flank the Xist locus. The synteny of this region is retained on chicken chromosome 4 where other loci belonging to the evolutionarily ancient stratum of the human X chromosome, the so-called X conserved region (XCR), are also located. We show that in both M. domestica and D. virginiana an evolutionary breakpoint has separated the Chic1 and Slc16a2 loci. Detailed analysis of opossum genomic sequences revealed linkage of Chic1 with the Lnx3 gene, recently proposed to be the evolutionary precursor of Xist, and Fip1, the evolutionary precursor of Tsx, a gene located immediately downstream of Xist in eutherians. We discuss these findings in relation to the evolution of Xist and X inactivation in mammals

    Identifying and Characterizing a Novel Protein Kinase STK35L1 and Deciphering Its Orthologs and Close-Homologs in Vertebrates

    Get PDF
    The human kinome containing 478 eukaryotic protein kinases has over 100 uncharacterized kinases with unknown substrates and biological functions. The Ser/Thr kinase 35 (STK35, Clik1) is a member of the NKF 4 (New Kinase Family 4) in the kinome with unknown substrates and biological functions. Various high throughput studies indicate that STK35 could be involved in various human diseases such as colorectal cancer and malaria. In this study, we found that the previously published coding sequence of the STK35 gene is incomplete. The newly identified sequence of the STK35 gene codes for a protein of 534 amino acids with a N-terminal elongation of 133 amino acids. It has been designated as STK35L (STK35 long). Since it is the first of further homologous kinases we termed it as STK35L1. The STK35L1 protein (58 kDa on SDS-PAGE), but not STK35 (44 kDa), was found to be expressed in all human cells studied (endothelial cells, HeLa, and HEK cells) and was down-regulated after silencing with specific siRNA. EGFP-STK35L1 was localized in the nucleus and the nucleolus. By combining syntenic and gene structure pattern data and homology searches, two further STK35L1 homologs, STK35L2 (previously known as PDIK1L) and STK35L3, were found. All these protein kinase homologs were conserved throughout the vertebrates. The STK35L3 gene was specifically lost during placental mammalian evolution. Using comparative genomics, we have identified orthologous sets of these three protein kinases genes and their possible ancestor gene in two sea squirt genomes. We found the full-length coding sequence of the STK35 gene and termed it as STK35L1. We identified a new third STK35-like gene, STK35L3, in vertebrates and a possible ancestor gene in sea squirt genome. This study will provide a comprehensive platform to explore the role of STK35L kinases in cell functions and human diseases

    A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes)

    Get PDF
    We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defined here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition. There appear to have been at least six independent acquisitions of very large (>100 kg) body size within Vombatiformes, several having already occurred by the late Oligocene

    A Phylogeny and Timescale for the Evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea

    Get PDF
    Pseudocheiridae (Marsupialia: Diprotodontia) is a family of endemic Australasian arboreal folivores, more commonly known as ringtail possums. Seventeen extant species are grouped into six genera (Pseudocheirus, Pseudochirulus, Hemibelideus, Petauroides, Pseudochirops, Petropseudes). Pseudochirops and Pseudochirulus are the only genera with representatives on New Guinea and surrounding western islands. Here, we examine phylogenetic relationships among 13 of the 17 extant pseudocheirid species based on protein-coding portions of the ApoB, BRCA1, ENAM, IRBP, Rag1, and vWF genes. Maximum parsimony, maximum likelihood, and Bayesian methods were used to estimate phylogenetic relationships. Two different relaxed molecular clock methods were used to estimate divergence times. Bayesian and maximum parsimony methods were used to reconstruct ancestral character states for geographic provenance and maximum elevation occupied. We find robust support for the monophyly of Pseudocheirinae (Pseudochirulus + Pseudocheirus), Hemibelidinae (Hemibelideus + Petauroides), and Pseudochiropsinae (Pseudochirops + Petropseudes), respectively, and for an association of Pseudocheirinae and Hemibelidinae to the exclusion of Pseudochiropsinae. Within Pseudochiropsinae, Petropseudes grouped more closely with the New Guinean Pseudochirops spp. than with the Australian Pseudochirops archeri, rendering Pseudochirops paraphyletic. New Guinean species belonging to Pseudochirops are monophyletic, as are New Guinean species belonging to Pseudochirulus. Molecular dates and ancestral reconstructions of geographic provenance combine to suggest that the ancestors of extant New Guinean Pseudochirops spp. and Pseudochirulus spp. dispersed from Australia to New Guinea ∼12.1–6.5 Ma (Pseudochirops) and ∼6.0–2.4 Ma (Pseudochirulus). Ancestral state reconstructions support the hypothesis that occupation of high elevations (>3000 m) is a derived feature that evolved on the terminal branch leading to Pseudochirops cupreus, and either evolved in the ancestor of Pseudochirulus forbesi, Pseudochirulus mayeri, and Pseudochirulus caroli, with subsequent loss in P. caroli, or evolved independently in P. mayeri and P. forbesi. Divergence times within the New Guinean Pseudochirops clade are generally coincident with the uplift of the central cordillera and other highlands. Diversification within New Guinean Pseudochirulus occurred in the Plio-Pleistocene after the establishment of the Central Range and other highlands

    Australia's Oldest Marsupial Fossils and their Biogeographical Implications

    Get PDF
    Background: We describe new cranial and post-cranial marsupial fossils from the early Eocene Tingamarra Local Fauna in Australia and refer them to Djarthia murgonensis, which was previously known only from fragmentary dental remains. Methodology/Principal Findings: The new material indicates that Djarthia is a member of Australidelphia, a pan-Gondwanan clade comprising all extant Australian marsupials together with the South American microbiotheres. Djarthia is therefore the oldest known crown-group marsupial anywhere in the world that is represented by dental, cranial and postcranial remains, and the oldest known Australian marsupial by 30 million years. It is also the most plesiomorphic known australidelphian, and phylogenetic analyses place it outside all other Australian marsupials. Conclusions/Significance: As the most plesiomorphic and oldest unequivocal australidelphian, Djarthia may approximate the ancestral morphotype of the Australian marsupial radiation and suggests that the South American microbiotheres may be the result of back-dispersal from eastern Gondwana, which is the reverse of prevailing hypotheses

    The skull of Epidolops ameghinoi from the early Eocene Itaboraí fauna, southeastern Brazil, and the affinities of the extinct marsupialiform order Polydolopimorphia

    Get PDF
    The skull of the polydolopimorphian marsupialiform Epidolops ameghinoi is described in detail for the first time, based on a single well-preserved cranium and associated left and right dentaries plus additional craniodental fragments, all from the early Eocene (53-50 million year old) Itaboraí fauna in southeastern Brazil. Notable craniodental features of E. ameghinoi include absence of a masseteric process, very small maxillopalatine fenestrae, a prominent pterygoid fossa enclosed laterally by a prominent ectopterygoid crest, an absent or tiny transverse canal foramen, a simple, planar glenoid fossa, and a postglenoid foramen that is immediately posterior to the postglenoid process. Most strikingly, the floor of the hypotympanic sinus was apparently unossified, a feature found in several stem marsupials but absent in all known crown marsupials. "Type II" marsupialiform petrosals previously described from Itaboraí plausibly belong to E. ameghinoi; in published phylogenetic analyses, these petrosals fell outside (crown-clade) Marsupialia. "IMG VII" tarsals previously referred to E. ameghinoi do not share obvious synapomorphies with any crown marsupial clade, nor do they resemble those of the only other putative polydolopimorphians represented by tarsal remains, namely the argyrolagids. Most studies have placed Polydolopimorphia within Marsupialia, related to either Paucituberculata, or to Microbiotheria and Diprotodontia. However, diprotodonty almost certainly evolved independently in polydolopimorphians, paucituberculatans and diprotodontians, and Epidolops does not share obvious synapomorphies with any marsupial order. Epidolops is dentally specialized, but several morphological features appear to be more plesiomorphic than any crown marsupial. It seems likely Epidolops that falls outside Marsupialia, as do morphologically similar forms such as Bonapartherium and polydolopids. Argyrolagids differ markedly in their known morphology from Epidolops but share some potential apomorphies with paucituberculatans. It is proposed that Polydolopimorphia as currently recognised is polyphyletic, and that argyrolagids (and possibly other taxa currently included in Argyrolagoidea, such as groeberiids and patagoniids) are members of Paucituberculata. This hypothesis is supported by Bayesian non-clock phylogenetic analyses of a total evidence matrix comprising DNA sequence data from five nuclear protein-coding genes, indels, retroposon insertions and morphological characters: Epidolops falls outside Marsupialia, whereas argyrolagids form a clade with the paucituberculatans Caenolestes and Palaeothentes, regardless of whether the Type II petrosals and IMG VII tarsals are used to score characters for Epidolops or not. There is no clear evidence for the presence of crown marsupials at Itaboraí, and it is possible that the origin and early evolution of Marsupialia was restricted to the "Austral Kingdom" (southern South America, Antarctica, and Australia)

    The Evolution of Epigenetic Regulators CTCF and BORIS/CTCFL in Amniotes

    Get PDF
    CTCF is an essential, ubiquitously expressed DNA-binding protein responsible for insulator function, nuclear architecture, and transcriptional control within vertebrates. The gene CTCF was proposed to have duplicated in early mammals, giving rise to a paralogue called “brother of regulator of imprinted sites” (BORIS or CTCFL) with DNA binding capabilities similar to CTCF, but testis-specific expression in humans and mice. CTCF and BORIS have opposite regulatory effects on human cancer-testis genes, the anti-apoptotic BAG1 gene, the insulin-like growth factor 2/H19 imprint control region (IGF2/H19 ICR), and show mutually exclusive expression in humans and mice, suggesting that they are antagonistic epigenetic regulators. We discovered orthologues of BORIS in at least two reptilian species and found traces of its sequence in the chicken genome, implying that the duplication giving rise to BORIS occurred much earlier than previously thought. We analysed the expression of CTCF and BORIS in a range of amniotes by conventional and quantitative PCR. BORIS, as well as CTCF, was found widely expressed in monotremes (platypus) and reptiles (bearded dragon), suggesting redundancy or cooperation between these genes in a common amniote ancestor. However, we discovered that BORIS expression was gonad-specific in marsupials (tammar wallaby) and eutherians (cattle), implying that a functional change occurred in BORIS during the early evolution of therian mammals. Since therians show imprinting of IGF2 but other vertebrate taxa do not, we speculate that CTCF and BORIS evolved specialised functions along with the evolution of imprinting at this and other loci, coinciding with the restriction of BORIS expression to the germline and potential antagonism with CTCF
    corecore