42 research outputs found

    Light-Cone Quantization and Hadron Structure

    Get PDF
    In this talk, I review the use of the light-cone Fock expansion as a tractable and consistent description of relativistic many-body systems and bound states in quantum field theory and as a frame-independent representation of the physics of the QCD parton model. Nonperturbative methods for computing the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock state representation of hadrons also describes quantum fluctuations containing intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden color". Fock state components of hadrons with small transverse size, such as those which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions; i.e., "color transparency". The use of light-cone Fock methods to compute loop amplitudes is illustrated by the example of the electron anomalous moment in QED. In other applications, such as the computation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to [email protected]

    Evolutionary Descent of Prion Genes from the ZIP Family of Metal Ion Transporters

    Get PDF
    In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease

    An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae

    Get PDF
    Background: Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings: We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance: YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org.This work was supported by grants from the N.S.F. (IIS-0325116, EIA-0219061), N.I.H. (GM06779-01,GM076536-01), Welch (F-1515), and a Packard Fellowship (EMM). These agencies were not involved in the design and conduct of the study, in the collection, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript.Cellular and Molecular Biolog

    Orexin A increases sympathetic nerve activity through promoting expression of proinflammatory cytokines in Sprague Dawley rats

    No full text
    Aim Accumulating evidence suggests that orexin signalling is involved in the regulation of blood pressure and cardiovascular function. However, the underlying mechanisms are not clear. Here, we test the hypothesis that upregulated orexin A signalling in the paraventricular nucleus (PVN) increases sympathetic nerve activity (SNA) through stimulating expression of proinflammatory cytokines (PICs). Methods In vivo sympathetic nerve recordings were performed to test the impact of PVN orexin signalling on sympathetic outflow in Sprague Dawley (SD) rats. Real‐time PCR was carried out to assess effects of central administration of orexin A on PVN PICs expression in SD rats. To test whether orexin A‐induced increases in PICs were exclusively mediated by orexin receptor 1 (OX1R), OX1R‐expressing PC12 (PC12‐OX1R) cells were incubated with different dose of orexin A, and then, PICs mRNA and immunoreactivity were measured. Results Orexin A microinjection (25 pmol) into the PVN significantly increased splanchnic SNA (93.5%) and renal SNA (83.3%) in SD rats, and these increases were attenuated by OX1R antagonist SB408124. Intracerebroventricular injection of orexin A (0.2 nmol) into SD rats increased mRNA levels of PICs including IL‐1‐ÎČ (2.7‐fold), IL‐6 (1.7‐fold) and TNF‐α (1.5‐fold), as well as Fra1 (1.6‐fold) in the PVN. Orexin A treatment in PC12‐OX1R cells resulted in a dose‐ and time‐dependent increase in the expression of PICs and Fra1, a subunit of AP1 transcriptional factor. The increase in the PICs was blocked by AP1 blocker curcumin. Conclusion Paraventricular nucleus orexin system activation is involved in SNA regulation maybe through triggering AP1‐PICs pathway
    corecore