174 research outputs found

    Changes in Cardiac Substrate Transporters and Metabolic Proteins Mirror the Metabolic Shift in Patients with Aortic Stenosis

    Get PDF
    In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic flux measured in the human heart. Echocardiography was performed to assess in vivo hypertrophy and aortic valve impairment in patients with aortic stenosis (n = 18). Cardiac biopsies were obtained during valve replacement surgery, and used for western blotting to measure metabolic protein levels. Protein levels of the predominant fatty acid transporter, fatty acid translocase (FAT/CD36) correlated negatively with levels of the glucose transporters, GLUT1 and GLUT4. The decrease in FAT/CD36 was accompanied by decreases in the fatty acid binding proteins, FABPpm and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase and the oxidative phosphorylation protein ATP synthase. FAT/CD36 and complex I of the electron transport chain were downregulated, whereas the glucose transporter GLUT4 was upregulated with increasing left ventricular mass index, a measure of cardiac hypertrophy. In conclusion, coordinated downregulation of sequential steps involved in fatty acid and oxidative metabolism occur in the human heart, accompanied by upregulation of the glucose transporters. The profile of the substrate transporters and metabolic proteins mirror the metabolic shift from fatty acid to glucose utilisation that occurs in vivo in the human heart

    Assessment of Metabolic Phenotypes in Patients with Non-ischemic Dilated Cardiomyopathy Undergoing Cardiac Resynchronization Therapy

    Get PDF
    Studies of myocardial metabolism have reported that contractile performance at a given myocardial oxygen consumption (MVO2) can be lower when the heart is oxidizing fatty acids rather than glucose or lactate. The objective of this study is to assess the prognostic value of myocardial metabolic phenotypes in identifying non-responders among non-ischemic dilated cardiomyopathy (NIDCM) patients undergoing cardiac resynchronization therapy (CRT). Arterial and coronary sinus plasma concentrations of oxygen, glucose, lactate, pyruvate, free fatty acids (FFA), and 22 amino acids were obtained from 19 male and 2 female patients (mean age 56 ± 16) with NIDCM undergoing CRT. Metabolite fluxes/MVO2 and extraction fractions were calculated. Flux balance analysis (FBA) was performed with MetaFluxNet 1.8 on a metabolic network of the cardiac mitochondria (189 reactions, 230 metabolites) reconstructed from mitochondrial proteomic data (615 proteins) from human heart tissue. Non-responders based on left ventricular ejection fraction (LVEF) demonstrated a greater mean FFA extraction fraction (35% ± 17%) than responders [18 ± 10%, p = 0.0098, area under the estimated ROC curve (AUC) was 0.8238, S.E. 0.1115]. Calculated adenosine triphosphate (ATP)/MVO2 using FBA correlated with change in New York Heart Association (NYHA) class (rho = 0.63, p = 0.0298; AUC = 0.8381, S.E. 0.1316). Non-responders based on both LVEF and NYHA demonstrated a greater mean FFA uptake/MVO2 (0.115 ± 0.112) than responders (0.034 ± 0.030, p = 0.0171; AUC = 0.8593, S.E. 0.0965). Myocardial FFA flux and calculated maximal ATP synthesis flux using FBA may be helpful as biomarkers in identifying non-responders among NIDCM patients undergoing CRT

    An Analysis of the Myocardial Transcriptome in a Mouse Model of Cardiac Dysfunction with Decreased Cholinergic Neurotransmission

    Get PDF
    Autonomic dysfunction is observed in many cardiovascular diseases and contributes to cardiac remodeling and heart disease. We previously reported that a decrease in the expression levels of the vesicular acetylcholine transporter (VAChT) in genetically-modified homozygous mice (VAChT KDHOM) leads to decreased cholinergic tone, autonomic imbalance and a phenotype resembling cardiac dysfunction. In order to further understand the molecular changes resulting from chronic long-term decrease in parasympathetic tone, we undertook a transcriptome-based, microarray-driven approach to analyze gene expression changes in ventricular tissue from VAChT KDHOM mice. We demonstrate that a decrease in cholinergic tone is associated with alterations in gene expression in mutant hearts, which might contribute to increased ROS levels observed in these cardiomyocytes. In contrast, in another model of cardiac remodeling and autonomic imbalance, induced through chronic isoproterenol treatment to increase sympathetic drive, these genes did not appear to be altered in a pattern similar to that observed in VAChT KDHOM hearts. These data suggest the importance of maintaining a fine balance between the two branches of the autonomic nervous system and the significance of absolute levels of cholinergic tone in proper cardiac function

    Etiology of Diarrhea in Older Children, Adolescents and Adults: A Systematic Review

    Get PDF
    Diarrhea is an important cause of illness and death around the world and among people of all ages, but unfortunately we often do not know what specific bacterium or virus causes the illness. We conducted a review of the scientific literature with the goal of finding published studies that identified bacteria and viruses among patients with diarrhea in the community and in hospital settings. We initially found nearly 26,000 papers on this topic but narrowed the list to 22 studies that met all of our specific criteria for inclusion in our review. Among patients hospitalized for diarrhea, E coli and Vibrio cholerae were found in more than 49% of people living in middle income and poor countries. Among patients who sought care from their doctor on an outpatient basis, Salmonella spp., Shigella spp., and E. histolytica were most often found. In our review we focused on the differences in the distribution of pathogens between patients in inpatient vs. outpatient settings because these estimates may best approximate what we would expect to see if the distribution were applied to global estimates of diarrhea deaths vs. uncomplicated illnesses

    The impact of glucose-insulin-potassium infusion in acute myocardial infarction on infarct size and left ventricular ejection fraction [ISRCTN56720616]

    Get PDF
    BACKGROUND: Favorable clinical outcomes have been observed with glucose-insulin-potassium infusion (GIK) in acute myocardial infarction (MI). The mechanisms of this beneficial effect have not been delineated clearly. GIK has metabolic, anti-inflammatory and profibrinolytic effects and it may preserve the ischemic myocardium. We sought to assess the effect of GIK infusion on infarct size and left ventricular function, as part of a randomized controlled trial. METHODS: Patients (n = 940) treated for acute MI by primary percutaneous coronary intervention (PCI) were randomized to GIK infusion or no infusion. Endpoints were the creatinine kinase MB-fraction (CK-MB) and left ventricular ejection fraction (LVEF). CK-MB levels were determined 0, 2, 4, 6, 24, 48, 72 and 96 hours after admission and the LVEF was measured before discharge. RESULTS: There were no differences between the two groups in the time course or magnitude of CK-MB release: the peak CK-MB level was 249 ± 228 U/L in the GIK group and 240 ± 200 U/L in the control group (NS). The mean LVEF was 43.7 ± 11.0 % in the GIK group and 42.4 ± 11.7% in the control group (P = 0.12). A LVEF ≤ 30% was observed in 18% in the controls and in 12% of the GIK group (P = 0.01). CONCLUSION: Treatment with GIK has no effect on myocardial function as determined by LVEF and by the pattern or magnitude of enzyme release. However, left ventricular function was preserved in GIK treated patients

    17β-Estradiol Prevents Early-Stage Atherosclerosis in Estrogen Receptor-Alpha Deficient Female Mice

    Get PDF
    Estrogen is atheroprotective and a high-affinity ligand for both known estrogen receptors, ERα and ERβ. However, the role of the ERα in early-stage atherosclerosis has not been directly investigated and is incompletely understood. ERα-deficient (ERα−/−) and wild-type (ERα+/+) female mice consuming an atherogenic diet were studied concurrent with estrogen replacement to distinguish the actions of 17β-estradiol (E2) from those of ERα on the development of early atherosclerotic lesions. Mice were ovariectomized and implanted with subcutaneous slow-release pellets designed to deliver 6 or 8 μg/day of exogenous 17β-estradiol (E2) for a period of up to 4 months. Ovariectomized mice (OVX) with placebo pellets (E2-deficient controls) were compared to mice with endogenous E2 (intact ovaries) and exogenous E2. Aortas were analyzed for lesion area, number, and distribution. Lipid and hormone levels were also determined. Compared to OVX, early lesion development was significantly (p < 0.001) attenuated by E2 with 55–64% reduction in lesion area by endogenous E2 and >90% reduction by exogenous E2. Compared to OVX, a decline in lesion number (2- to 4-fold) and lesser predilection (~4-fold) of lesion formation in the proximal aorta also occurred with E2. Lesion size, development, number, and distribution inversely correlated with circulating plasma E2 levels. However, atheroprotection was independent of ERα status, and E2 athero-protection in both genotypes was not explained by changes in plasma lipid levels (total cholesterol, triglyceride, and high-density lipoprotein cholesterol). The ERα is not essential for endogenous/exogenous E2-mediated protection against early-stage atherosclerosis. These observations have potentially significant implications for understanding the molecular and cellular mechanisms and timing of estrogen action in different estrogen receptor (ER) deletion murine models of atherosclerosis, as well as implications to human studies of ER polymorphisms and lipid metabolism. Our findings may contribute to future improved clinical decision-making concerning the use of hormone therapy

    Left ventricular remodeling in swine after myocardial infarction: a transcriptional genomics approach

    Get PDF
    Despite the apparent appropriateness of left ventricular (LV) remodeling following myocardial infarction (MI), it poses an independent risk factor for development of heart failure. There is a paucity of studies into the molecular mechanisms of LV remodeling in large animal species. We took an unbiased molecular approach to identify candidate transcription factors (TFs) mediating the genetic reprogramming involved in post-MI LV remodeling in swine. Left ventricular tissue was collected from remote, non-infarcted myocardium, 3 weeks after MI-induction or sham-surgery. Microarray analysis identified 285 upregulated and 278 downregulated genes (FDR < 0.05). Of these differentially expressed genes, the promoter regions of the human homologs were searched for common TF binding sites (TFBS). Eighteen TFBS were overrepresented >two-fold (p < 0.01) in upregulated and 13 in downregulated genes. Left ventricular nuclear protein extracts were assayed for DNA-binding activity by protein/DNA array. Out of 345 DNA probes, 30 showed signal intensity changes >two-fold. Five TFs were identified in both TFBS and protein/DNA array analyses, which showed matching changes for COUP-TFII and glucocorticoid receptor (GR) only. Treatment of swine with the GR antagonist mifepristone after MI reduced the post-MI increase in LV mass, but LV dilation remained unaffected. Thus, using an unbiased approach to study post-MI LV remodeling in a physiologically relevant large animal model, we identified COUP-TFII and GR as potential key mediators of post-MI remodeling

    Glucose-Insulin Therapy, Plasma Substrate Levels and Cardiac Recovery After Cardiac Ischemic Events

    Get PDF
    INTRODUCTION: The potential usefulness of glucose-insulin therapy relies to a large extent on the premise that it prevents hyperglycemia and hyperlipidemia following cardiac ischemic events. METHODS: In this review we evaluate the literature concerning plasma glucose and free fatty acids levels during and following cardiac ischemic events. RESULTS: The data indicate that hyperlipidemia and hyperglycemia most likely occur during acute coronary ischemic syndromes in the conscious state (e.g. acute myocardial infarction) and less so during reperfusion following CABG reperfusion. This is in accordance with observations that glucose-insulin therapy during early reperfusion post CABG may actually cause hypolipidemia, because substantial hyperlipidemia does not appear to occur during that stage of cardiac surgery. DISCUSSION: Considering recent data indicating that hypolipidemia may be detrimental for cardiac function, we propose that free fatty acid levels during reperfusion post CABG with the adjunct glucose-insulin therapy need to be closely monitored. CONCLUSION: From a clinical point of view, a strategy directed at monitoring and thereafter maintaining plasma substrate levels in the normal range for both glucose (4-6 mM) and FFA (0.2-0.6 mM) as well as stimulation of glucose oxidation, promises to be the most optimal metabolic reperfusion treatment following cardiac ischemic episodes. Future (preclinical and subsequently clinical) investigations are required to investigate whether the combination of glucose-insulin therapy with concomitant lipid administration may be beneficial in the setting of reperfusion post CAB

    Role of TNFα in pulmonary pathophysiology

    Get PDF
    Tumor necrosis factor alpha (TNFα) is the most widely studied pleiotropic cytokine of the TNF superfamily. In pathophysiological conditions, generation of TNFα at high levels leads to the development of inflammatory responses that are hallmarks of many diseases. Of the various pulmonary diseases, TNFα is implicated in asthma, chronic bronchitis (CB), chronic obstructive pulmonary disease (COPD), acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In addition to its underlying role in the inflammatory events, there is increasing evidence for involvement of TNFα in the cytotoxicity. Thus, pharmacological agents that can either suppress the production of TNFα or block its biological actions may have potential therapeutic value against a wide variety of diseases. Despite some immunological side effects, anti-TNFα therapeutic strategies represent an important breakthrough in the treatment of inflammatory diseases and may have a role in pulmonary diseases characterized by inflammation and cell death
    corecore