23 research outputs found

    Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their revaluation

    Get PDF
    The threshold of toxicological concern (TTC) approach is a resource-effective de minimismethod for the safety assessment of chemicals, based on distributional analysis of the results of a large number of toxicological studies. It is being increasingly used to screen and prioritise substances with low exposure for which there is little or no toxicological information. The first step in the approach is the identification of substances that may be DNA-reactive mutagens, to which the lowest TTC value is applied. This TTC value was based on analysis of the cancer potency database and involved a number of assumptions that no longer reflect the state-of-the-science and some of which were not as transparent as they could have been. Hence, review and updating of the database is proposed, using inclusion and exclusion criteria reflecting current knowledge. A strategy for the selection of appropriate substances for TTC determination, based on consideration of weight of evidence for genotoxicity and carcinogenicity is outlined. Identification of substances that are carcinogenic by a DNA-reactive mutagenicmode of action and those that clearly act by a non-genotoxic mode of action will enable the protectiveness to be determined of both the TTC for DNA-reactive mutagenicityand that applied by default to substances that may be carcinogenic but are unlikely to be DNA-reactive mutagens (i.e. for Cramer class I-III compounds). Critical to the application of the TTC approach to substances that are likely to be DNA-reactive mutagens is the reliability of the software tools used to identify such compounds. Current methods for this task are reviewed and recommendations made for their application

    Clinical proton MR spectroscopy in central nervous system disorders.

    No full text
    A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units
    corecore