38 research outputs found

    Genome-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas syringae pv. tomato str. DC3000

    Get PDF
    RNA-Seq has provided valuable insights into global gene expression in a wide variety of organisms. Using a modified RNA-Seq approach and Illumina's high-throughput sequencing technology, we globally identified 5â€Č-ends of transcripts for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. A substantial fraction of 5â€Č-ends obtained by this method were consistent with results obtained using global RNA-Seq and 5â€ČRACE. As expected, many 5â€Č-ends were positioned a short distance upstream of annotated genes. We also captured 5â€Č-ends within intergenic regions, providing evidence for the expression of un-annotated genes and non-coding RNAs, and detected numerous examples of antisense transcription, suggesting additional levels of complexity in gene regulation in DC3000. Importantly, targeted searches for sequence patterns in the vicinity of 5â€Č-ends revealed over 1200 putative promoters and other regulatory motifs, establishing a broad foundation for future investigations of regulation at the genomic and single gene levels

    Correlations in spiking neuronal networks with distance dependent connections

    Get PDF
    Can the topology of a recurrent spiking network be inferred from observed activity dynamics? Which statistical parameters of network connectivity can be extracted from firing rates, correlations and related measurable quantities? To approach these questions, we analyze distance dependent correlations of the activity in small-world networks of neurons with current-based synapses derived from a simple ring topology. We find that in particular the distribution of correlation coefficients of subthreshold activity can tell apart random networks from networks with distance dependent connectivity. Such distributions can be estimated by sampling from random pairs. We also demonstrate the crucial role of the weight distribution, most notably the compliance with Dales principle, for the activity dynamics in recurrent networks of different types

    The ethical desirability of moral bioenhancement: A review of reasons

    Get PDF
    Background: The debate on the ethical aspects of moral bioenhancement focuses on the desirability of using biomedical as opposed to traditional means to achieve moral betterment. The aim of this paper is to systematically review the ethical reasons presented in the literature for and against moral bioenhancement. Discussion: A review was performed and resulted in the inclusion of 85 articles. We classified the arguments used in those articles in the following six clusters: (1) why we (don't) need moral bioenhancement, (2) it will (not) be possible to reach consensus on what moral bioenhancement should involve, (3) the feasibility of moral bioenhancement and the status of current scientific research, (4) means and processes of arriving at moral improvement matter ethically, (5) arguments related to the freedom, identity and autonomy of the individual, and (6) arguments related to social/group effects and dynamics. We discuss each argument separately, and assess the debate as a whole. First, there is little discussion on what distinguishes moral bioenhancement from treatment of pathological deficiencies in morality. Furthermore, remarkably little attention has been paid so far to the safety, risks and side-effects of moral enhancement, including the risk of identity changes. Finally, many authors overestimate the scientific as well as the practical feasibility of the interventions they discuss, rendering the debate too speculative. Summary: Based on our discussion of the arguments used in the debate on moral enhancement, and our assessment of this debate, we advocate a shift in focus. Instead of speculating about non-realistic hypothetical scenarios such as the genetic engineering of morality, or morally enhancing 'the whole of humanity', we call for a more focused debate on realistic options of biomedical treatment of moral pathologies and the concrete moral questions these treatments raise

    The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    Get PDF
    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Longitudinal investigation of energy expenditure in infants with cystic fibrosis

    No full text
    Objective: To determine when energy expenditure becomes elevated in infants with cystic fibrosis (CF). Design: Longitudinal studies of total energy expenditure (TEE) using doubly labeled water were conducted in infants identified with CF by newborn screening through the first year of life. Setting: Hospital and community based studies in Denver, Colorado, USA and Cambridge, UK. Results: Eight of the 12 infants enrolled had begun enzyme therapy but were clinically asymptomatic. Four of the 12 infants were heterozygous for the delta F508 mutation, however no difference was seen in TEE from the remaining homozygous infants. TEE was compared to control cohorts at 2, 6 and 12 months of age. There was no difference from the control groups in TEE/kg fat free mass (FFM)/day at 2 months. However, by 6 months of age TEE/kg FFM/day in infants with CF exceeded that of age-matched controls by 25% (P < 0.001). This elevation in TEE continued at 12 months of age exceeding that of controls by 30% (P < 0.05). Conclusions: These results indicate that infants with CF have increased energy needs by 6 months of age and that early diagnosis alone does not prevent the development of increased caloric requirements. These findings emphasize the need for close nutritional monitoring to prevent suboptimal growth during infancy in this population. Sponsorship: This research was supported by grant number 5 MO1 RR00069, General Clinical Research Centers Program, National Center for Research Resources, NIH
    corecore