818 research outputs found
A Compact Representation of Histopathology Images using Digital Stain Separation & Frequency-Based Encoded Local Projections
In recent years, histopathology images have been increasingly used as a
diagnostic tool in the medical field. The process of accurately diagnosing a
biopsy sample requires significant expertise in the field, and as such can be
time-consuming and is prone to uncertainty and error. With the advent of
digital pathology, using image recognition systems to highlight problem areas
or locate similar images can aid pathologists in making quick and accurate
diagnoses. In this paper, we specifically consider the encoded local
projections (ELP) algorithm, which has previously shown some success as a tool
for classification and recognition of histopathology images. We build on the
success of the ELP algorithm as a means for image classification and
recognition by proposing a modified algorithm which captures the local
frequency information of the image. The proposed algorithm estimates local
frequencies by quantifying the changes in multiple projections in local windows
of greyscale images. By doing so we remove the need to store the full
projections, thus significantly reducing the histogram size, and decreasing
computation time for image retrieval and classification tasks. Furthermore, we
investigate the effectiveness of applying our method to histopathology images
which have been digitally separated into their hematoxylin and eosin stain
components. The proposed algorithm is tested on the publicly available invasive
ductal carcinoma (IDC) data set. The histograms are used to train an SVM to
classify the data. The experiments showed that the proposed method outperforms
the original ELP algorithm in image retrieval tasks. On classification tasks,
the results are found to be comparable to state-of-the-art deep learning
methods and better than many handcrafted features from the literature.Comment: Accepted for publication in the International Conference on Image
Analysis and Recognition (ICIAR 2019
Preliminary X-ray analysis of a new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis.
Journal ArticleResearch Support, Non-U.S. Gov'tA new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis has been obtained. The crystals exhibit a 'teardrop' morphology and are grown from 2 M ammonium dihydrogen phosphate pH and diffract to beyond 1.7 A resolution. They are in tetragonal space group P4222 with unit-cell dimensions of a = b = 201.9, c = 178.19 A, alpha = beta = gamma = 90 degrees. A 2.3 A resolution native data set has been collected at the Hamburg Synchrotron. A mercury derivative data set has also been collected, and the heavy-atom positions have been determined. The self-rotation function and the positions of the heavy atoms are consistent with the molecule being a dodecamer with local 23 symmetry.Biotechnology and Biological Research Council
Structure of a phosphoglycerate mutase:3-phosphoglyceric acid complex at 1.7 A.
Journal ArticleResearch Support, Non-U.S. Gov'tThe crystal structure of the tetrameric glycolytic enzyme phosphoglycerate mutase from the yeast Saccharomyces cerevisiae has been determined to 1.7 A resolution in complex with the sugar substrate. The difference map indicates that 3-phosphoglycerate is bound at the base of a 12 A cleft, positioning C2 of the substrate within 3.5 A of the primary catalytic residue, histidine 8.BBSR
Listening to limericks: a pupillometry investigation of perceivers’ expectancy
What features of a poem make it captivating, and which cognitive mechanisms are sensitive to these features? We addressed these questions experimentally by measuring pupillary responses of 40 participants who listened to a series of Limericks. The Limericks ended with either a semantic, syntactic, rhyme or metric violation. Compared to a control condition without violations, only the rhyme violation condition induced a reliable pupillary response. An anomaly-rating study on the same stimuli showed that all violations were reliably detectable relative to the control condition, but the anomaly induced by rhyme violations was perceived as most severe. Together, our data suggest that rhyme violations in Limericks may induce an emotional response beyond mere anomaly detection
Unraveling the B. pseudomallei Heptokinase WcbL: from structure to drug discovery
Journal ArticleOpen Access funded by Biotechnology and Biological Sciences Research Council under a Creative Commons Attribution 4.0 International Public LicenseGram-negative bacteria utilize heptoses as part of their repertoire of extracellular polysaccharide virulence determinants. Disruption of heptose biosynthesis offers an attractive target for novel antimicrobials. A critical step in the synthesis of heptoses is their 1-O phosphorylation, mediated by kinases such as HldE or WcbL. Here, we present the structure of WcbL from Burkholderia pseudomallei. We report that WcbL operates through a sequential ordered Bi-Bi mechanism, loading the heptose first and then ATP. We show that dimeric WcbL binds ATP anti-cooperatively in the absence of heptose, and cooperatively in its presence. Modeling of WcbL suggests that heptose binding causes an elegant switch in the hydrogen-bonding network, facilitating the binding of a second ATP molecule. Finally, we screened a library of drug-like fragments, identifying hits that potently inhibit WcbL. Our results provide a novel mechanism for control of substrate binding and emphasize WcbL as an attractive anti-microbial target for Gram-negative bacteria.Biotechnology and Biological Sciences Research Counci
Recommended from our members
The biomechanics of amnion rupture: an X-ray diffraction study
Pre-term birth is the leading cause of perinatal and neonatal mortality, 40% of which are attributed to the pre-term premature rupture of amnion. Rupture of amnion is thought to be associated with a corresponding decrease in the extracellular collagen content and/or increase in collagenase activity. However, there is very little information concerning the detailed organisation of fibrillar collagen in amnion and how this might influence rupture. Here we identify a loss of lattice like arrangement in collagen organisation from areas near to the rupture site, and present a 9% increase in fibril spacing and a 50% decrease in fibrillar organisation using quantitative measurements gained by transmission electron microscopy and the novel application of synchrotron X-ray diffraction. These data provide an accurate insight into the biomechanical process of amnion rupture and highlight X-ray diffraction as a new and powerful tool in our understanding of this process
Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis
The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae.
This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics
Spatial distribution of early red lesions is a risk factor for development of vision-threatening diabetic retinopathy
Aims/hypothesis
Diabetic retinopathy is characterised by morphological lesions related to disturbances in retinal blood flow. It has previously been shown that the early development of retinal lesions temporal to the fovea may predict the development of treatment-requiring diabetic maculopathy. The aim of this study was to map accurately the area where lesions could predict progression to vision-threatening retinopathy.
Methods
The predictive value of the location of the earliest red lesions representing haemorrhages and/or microaneurysms was studied by comparing their occurrence in a group of individuals later developing vision-threatening diabetic retinopathy with that in a group matched with respect to diabetes type, age, sex and age of onset of diabetes mellitus who did not develop vision-threatening diabetic retinopathy during a similar observation period.
Results
The probability of progression to vision-threatening diabetic retinopathy was higher in a circular area temporal to the fovea, and the occurrence of the first lesions in this area was predictive of the development of vision-threatening diabetic retinopathy. The calculated peak value showed that the risk of progression was 39.5% higher than the average. There was no significant difference in the early distribution of lesions in participants later developing diabetic maculopathy or proliferative diabetic retinopathy.
Conclusions/interpretation
The location of early red lesions in diabetic retinopathy is predictive of whether or not individuals will later develop vision-threatening diabetic retinopathy. This evidence should be incorporated into risk models used to recommend control intervals in screening programmes for diabetic retinopathy
Transit Photometry as an Exoplanet Discovery Method
Photometry with the transit method has arguably been the most successful
exoplanet discovery method to date. A short overview about the rise of that
method to its present status is given. The method's strength is the rich set of
parameters that can be obtained from transiting planets, in particular in
combination with radial velocity observations; the basic principles of these
parameters are given. The method has however also drawbacks, which are the low
probability that transits appear in randomly oriented planet systems, and the
presence of astrophysical phenomena that may mimic transits and give rise to
false detection positives. In the second part we outline the main factors that
determine the design of transit surveys, such as the size of the survey sample,
the temporal coverage, the detection precision, the sample brightness and the
methods to extract transit events from observed light curves. Lastly, an
overview over past, current and future transit surveys is given. For these
surveys we indicate their basic instrument configuration and their planet
catch, including the ranges of planet sizes and stellar magnitudes that were
encountered. Current and future transit detection experiments concentrate
primarily on bright or special targets, and we expect that the transit method
remains a principal driver of exoplanet science, through new discoveries to be
made and through the development of new generations of instruments.Comment: Review chapte
Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB
- …
