154 research outputs found

    Extraction of certain heavy metals from sewage sludge using different types of acids

    Get PDF
    The removal of heavy metal from sludge before disposal or application to farmland is a necessary step to achieve a more safe sludge usage or disposal. Chemical extraction using inorganic acids (nitric, hydrochloric) and organic acids (citric, oxalic) were tested for extraction of chromium, copper, nickel, lead and zinc from contaminated sewage sludge at different pH and reaction time. Results revealed that solubilization of metals using inorganic acids achieved its maximum extraction efficiency (Cr-88%, Cu-82%, Ni-86%, Pb-94%, Zn-89%) at pH value lower than 2 and acid contact times of 1hour. while in case of organic acids oxalic acid does not show good results comparing to citric acid that at pH 2.43 citric acid seemed to be highly effective in extracting Cu (86%), Zn(88%), mostly after 1 day of extraction time, Cr (90%), Ni (96%) at 5 days leaching time, while Pb(85%) removal at the same pH was at a longer leaching time 10 days. At pH 3, citric acid seemed to be also highly effective in extracting Cr (66%), Cu(48%), Pb (66%), Zn(69%) at 1 day, while higher removal was also attained for Ni(68%) at only 4 h leaching time. Finally the extraction efficiencies of citric acid for Cr, Cu, Ni, Pb, Zn, are high enough to reduce the heavy metal content in sludge to levels below the legal standards

    Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)

    Get PDF
    When operating near the ground beneath a Vertical/Short Take-Off and Landing (VSTOL) aircraft a complex turbulent 3D flow is generated. This flow field can be represented by the configuration of twin impinging jets in a cross-flow. Studying these jets is a significant parameter for the design of VTOL aircraft. This flowfield during very low speed or hover flight operations is very complex and time dependent. An important number of experimental researches and simulations have been carried out to be able to understand much better these flows related with powered lift vehicles. Computational Fluid Dynamics (CFD) approach will be used in this paper work for simulation purposes of a single and twin impinging jet through and without crossflow

    Oxidative stress in pregnancy and fertility pathologies

    Get PDF
    Oxidative stress designates the state of imbalance between reactive oxygen species (ROS) production and antioxidant levels. In a healthy placenta, there is an increase in ROS production, due to formation of new tissues and inherent metabolism, but this is balanced by higher levels of antioxidants. However, this balance is lost in some situations, with a consequent increase in oxidative stress levels. Oxidative stress has been implicated in several placental disorders and pregnancy pathologies. The present review intends to summarize what is known about the relationship between oxidative stress and well-known pregnancy disorders

    Minimally invasive surgery and cancer: controversies part 1

    Get PDF
    Perhaps there is no more important issue in the care of surgical patients than the appropriate use of minimally invasive surgery (MIS) for patients with cancer. Important advances in surgical technique have an impact on early perioperative morbidity, length of hospital stay, pain management, and quality of life issues, as clearly proved with MIS. However, for oncology patients, historically, the most important clinical questions have been answered in the context of prospective randomized trials. Important considerations for MIS and cancer have been addressed, such as what are the important immunologic consequences of MIS versus open surgery and what is the role of laparoscopy in the staging of gastrointestinal cancers? This review article discusses many of the key controversies in the minimally invasive treatment of cancer using the pro–con debate format

    The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

    Get PDF
    The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids

    Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    Get PDF
    Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth
    corecore