1,726 research outputs found
Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules
Background:
Inflammation within the oral cavity occurs due to dysregulation between microbial biofilms and the host response. Understanding how different oral hygiene products influence inflammatory properties is important for the development of new products. Therefore, creation of a robust host-pathogen biofilm platform capable of evaluating novel oral healthcare compounds is an attractive option. We therefore devised a multi-species biofilm co-culture model to evaluate the naturally derived polyphenol resveratrol (RSV) and gold standard chlorhexidine (CHX) with respect to anti-biofilm and anti-inflammatory properties.<p></p>
Methods:
An in vitro multi-species biofilm containing <i>S. mitis, F. nucleatum, P. Gingivalis</i> and <i>A. Actinomycetemcomitans</i> was created to represent a disease-associated biofilm and the oral epithelial cell in OKF6-TERT2. Cytotoxicity studies were performed using RSV and CHX. Multi-species biofilms were either treated with either molecule, or alternatively epithelial cells were treated with these prior to biofilm co-culture. Biofilm composition was evaluated and inflammatory responses quantified at a transcriptional and protein level.<p></p>
Results:
CHX was toxic to epithelial cells and multi-species biofilms at concentrations ranging from 0.01-0.2%. RSV did not effect multi-species biofilm composition, but was toxic to epithelial cells at concentrations greater than 0.01%. In co-culture, CHX-treated biofilms resulted in down regulation of the inflammatory chemokine IL-8 at both mRNA and protein level. RSV-treated epithelial cells in co-culture were down-regulated in the release of IL-8 protein, but not mRNA.<p></p>
Conclusions:
CHX possesses potent bactericidal properties, which may impact downstream inflammatory mediators. RSV does not appear to have bactericidal properties against multi-species biofilms, however it did appear to supress epithelial cells from releasing inflammatory mediators. This study demonstrates the potential to understand the mechanisms by which different oral hygiene products may influence gingival inflammation, thereby validating the use of a biofilm co-culture model.<p></p>
Evaluation of CyberKnife ® fiducial tracking limitations to assist targeting accuracy: A phantom study with fiducial displacement
Introduction The underlying assumptions of the CyberKnife® (Accuray, Sunnyvale, CA, US) fiducial tracking system are: i) fiducial positions are accurately detected; ii) inter-fiducial geometry remains consistent (rigid); iii) inter-fiducial geometric array changes are detected and either accommodated with corrections or treatment is interrupted. However: i) soft-tissue targets are deformable & fiducial migration is possible; ii) the accuracy of the tracking system has not previously been examined with fiducial displacement; iii) treatment interruptions may occur due to inter-fiducial geometric changes, but there is little information available to assist subsequent troubleshooting. The purpose of this study was to emulate a clinical target defined with a two, three, or four-fiducial array where one fiducial is displaced to mimic a target deformation or fiducial migration scenario. The objectives: evaluate the fiducial positioning accuracy, array interpretation, & corresponding corrections of the CyberKnife system, with the aim of assisting troubleshooting following fiducial displacement. Methods A novel solid-water phantom was constructed with three fixed fiducials (F1,F2,F3) & one moveable fiducial (F4), arranged as if placed to track an imaginary clinical target. Using either two fiducials (F1,F4), different combinations of three fiducials (F1,F2,F4; F1,F3,F4; F2,F3,F4) or four fiducials (F1,F2,F3,F4), repeat experiments were conducted where F4 was displaced inferiorly at 2-mm intervals from 0-16 mm. Data were acquired at each position of F4, including rigid body errors (RBE), fiducial x, y, & z coordinate displacements, six degrees of freedom (DOF) corrections, & robot center-of-mass (COM) translation corrections. Results Maximum positioning difference (mean±SD) between the reference and live x, y, & z coordinates for the three fixed fiducials was 0.08±0.30 mm, confirming good accuracy for fixed fiducial registration. For two fiducials (F1,F4), F4 registration was accurate to 14-mm displacement and the F4 x-axis coordinate change was 2.0±0.12 mm with each 2 mm inferior displacement validating the phantom for tracking evaluation. RBE was >5 mm (system threshold) at 6-14 mm F4 displacement: however, F1 was misidentified as the RBE main contributor. Further, F1/F4 false-lock occurred at 16 mm F4 displacement with corresponding RBE 13 mm. For combinations of three fiducials, F4 registration was accurate to 10-mm displacement. RBE was >5 mm at 6-16 mm F4 displacement: however, F4 false-lock occurred at 12-16 mm with RBE 5-6 mm. For four fiducials, F4 registration was accurate to 4 mm displacement: however, F4 false-lock occurred at 6-16 mm displacement with concerning RBE <2 & <5 at 6 & 8-mm F4 displacement, respectively. False-locks were easily identified in the phantom but frequently uncorrectable. Conclusions Results indicate fiducial positioning accuracy and system output following fiducial displacement depends on the number of fiducials correlated, displacement distance, and clinical thresholds applied. Displacements ≤4 mm were accurately located, but some displacements 6-16 mm were misrepresented, either by erroneous main contributor (two-fiducial array only) or by false-locks and misleading RBE, which underestimated displacement. Operator vigilance and implementation of our practical guidelines based on the study findings may help reduce targeting error and assist troubleshooting in clinical situations
HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons
Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. © 2013 Zhang et al
Changing Landscapes for the Third Sector: Enhancing Knowledge and Informing Practice. Report on the Timescapes Archive.
The broad aim of the Changing Landscapes project, as set out in the proposal to ESRC, was “to bring together a body of qualitative longitudinal and life course research on the third sector in order to exchange knowledge and data of relevance to the future development of the sector”. Underpinning this aim is the Timescapes Archive – a specialist archive of Qualitative Longitudinal (QL) data for sharing and re-use. The long term strategy for the archive is to build collections of thematically related QL datasets, including non ESRC funded datasets, in order to facilitate data discovery and secondary analysis across a range of substantive topics. This is in a context where QL methodology is fast advancing and a growing number of projects are being funded. The archive originally contained a collection of 9 datasets (Changing Relationships and Identities through the Life Course - short hand title, Changing Relationships and Identities). Under the new funding, the aim was to develop a new collection of datasets (Changing Landscapes for the Third Sector). The specific objective was to “prepare data from two complementary datasets (NCVO and Birmingham) and ingest the data into the Timescapes Archive” (ESRC proposal). This report describes the work undertaken in order to achieve the objective of adding two datasets to the Timescapes Archive, but also details the important development work undertaken to establish the Timescapes Archive on a new technical platform which will support the long term strategy for the Archive and ensure that the Archive is aligned with the University of Leeds institutional data management provision
Sugar Ka Saathi – A Case Study Designing Digital Self-management Tools for People Living with Diabetes in Pakistan
This paper presents the results of an iterative participatory process to design a smart self-management tool for less-literate people living with diabetes in Pakistan. Initially, interviews and focus groups with sixty-nine people living with diabetes identified issues that they face when self-managing including un-controllable factors, lack of diabetes awareness, low-tech mobile phones, and poor internet availability. We developed personas grounded in the scoping results and adjusted our PD approach to focus on more tangible design artefacts before running narrative scoping PD sessions. Working from older, illiterate persona, we designed a phone-line delivered Interactive Voice Response (IVR) system.
We developed a functional IVR Prototype “Sugar ka Saathi” (Diabetes Companion) with input from a group of 4 Pakistan-based healthcare professionals, to act as a design probe in the PD process. We tested the IVR probe with fifty-seven of the original scoping participants which validated the knowledge transferred by the IVR and its acceptability. Invisible design videos were shown to elaborate the IVR and community concept to thirteen participants through two filmed videos using our existing persona characters from the scoping studies, these videos helped to engage older people with diabetes in PD sessions
Monitoring Cognitive and Emotional Processes Through Pupil and Cardiac Response During Dynamic Versus Logical Task
The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error
Presenting patient data in the electronic care record: the role of timelines
OBJECTIVE: To establish the current level of awareness and investigate the use of timelines within clinical computing systems as an organized display of the electronic patient record (EPR). DESIGN: Multicentre survey conducted using questionnaires and interview. SETTING: Seven UK hospitals and several general practice surgeries. PARTICIPANTS: A total of 120 healthcare professionals completed a questionnaire which directed structured interviews. Participants fell into two cohorts according to whether or not they had used clinical timelines, which gave 60 timeline users and 60 prospective timeline users. MAIN OUTCOME MEASURES: To investigate the awareness of timelines, and the potential benefits of timelines within clinical computing systems. RESULTS: Fifty-eight percent of participants had not heard of the specific term timelines despite 75% of users utilizing a form of timeline on a daily basis. The potential benefits of future timelines were clinical audit (95%CI 77.6-91.6), increased time efficiency (95%CI 77.7-91.6%), reduced clinical error (95%CI 71.0-86.7) and improved patient safety (95%CI 70.0-85.9). One continuous timeline view between primary and secondary care was considered to be of great potential benefit in allowing communication via a unified patient record. CONCLUSIONS: The concept of timelines has enjoyed proven success in healthcare in the USA and in other sectors worldwide. Clinicians are supportive of timelines in healthcare. Formal input from clinicians should be sought when designing and implementing computer systems in healthcare. Timelines in healthcare support clinicians cognitive processes by improving the amount of data available and improving the way in which data are presented
Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients
Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular
Viral Gastroenteritis Associated with Genogroup II Norovirus among U.S. Military Personnel in Turkey, 2009
The present study demonstrates that multiple NoV genotypes belonging to genogroup II contributed to an acute gastroenteritis outbreak at a US military facility in Turkey that was associated with significant negative operational impact. Norovirus (NoV) is an important pathogen associated with acute gastroenteritis among military populations. We describe the genotypes of NoV outbreak occurred at a United States military facility in Turkey. Stool samples were collected from 37 out of 97 patients presenting to the clinic on base with acute gastroenteritis and evaluated for bacterial and viral pathogens. NoV genogroup II (GII) was identified by RT-PCR in 43% (16/37) stool samples. Phylogenetic analysis of a 260 base pair fragment of the NoV capsid gene from ten stool samples indicated the circulation of multiple and rare genotypes of GII NoV during the outbreak. We detected four GII.8 isolates, three GII.15, two GII.9 and a sole GII.10 NoV. Viral sequences could be grouped into four clusters, three of which have not been previously reported in Turkey. The fact that current NoV outbreak was caused by rare genotypes highlights the importance of norovirus strain typing. While NoV genogroup II is recognized as causative agent of outbreak, circulation of current genotypes has been rarely observed in large number of outbreaks
p53 mutations in classic and pleomorphic invasive lobular carcinoma of the breast
Contains fulltext :
110338.pdf (publisher's version ) (Open Access)BACKGROUND: p53 is a tumor suppressor that is frequently mutated in human cancers. Although alterations in p53 are common in breast cancer, few studies have specifically investigated TP53 mutations in the breast cancer subtype invasive lobular carcinoma (ILC). Recently reported conditional mouse models have indicated that functional p53 inactivation may play a role in ILC development and progression. Since reports on the detection of TP53 mutations in the relatively favorable classic and more aggressive pleomorphic variants of ILC (PILC) are rare and ambiguous, we performed a comprehensive analysis to determine the mutation status of TP53 in these breast cancer subtypes. METHODS: To increase our understanding of p53-mediated pathways and the roles they may play in the etiology of classic ILC and PILC, we investigated TP53 mutations and p53 accumulation in a cohort of 22 cases of classic and 19 cases of PILC by direct DNA sequencing and immunohistochemistry. RESULTS: We observed 11 potentially pathogenic TP53 mutations, of which three were detected in classic ILC (13.6%) and 8 in PILC (42.1%; p = 0.04). While p53 protein accumulation was not significantly different between classic and pleomorphic ILC, mutations that affected structure and protein function were significantly associated with p53 protein levels. CONCLUSION: TP53 mutations occur more frequently in PILC than classic ILC.1 april 201
- …