386 research outputs found
The distribution of meteorite finds in the Namibian desert and recovery of a highly shocked meteorite pairing group.
Published versio
Mechanical and thermal properties of hybrid fibre-reinforced concrete exposed to recurrent high temperature and aviation oil
Over the years, leaked fluids from aircraft have caused severe deterioration of airfield pavement. The combined effect of hot exhaust from the auxiliary power unit of military aircraft and spilt aviation oils have caused rapid pavement spalling. If the disintegrated concreted pieces caused by spalling are sucked into the jet engine, they may cause catastrophic damage to the aircraft engine or physical injury to maintenance crews. This study investigates the effectiveness of incorporating hybrid fibres into ordinary concrete to improve the residual mechanical and thermal properties to prevent spalling damage of pavement. Three fibre-reinforced concrete samples were made with micro steel fibre and polyvinyl alcohol fibre with a fibre content of zero, 0.3%, 0.5% and 0.7% by volume fraction. These samples were exposed to recurring high temperatures and aviation oils. Tests were conducted to measure the effects of repeated exposure on the concrete’s mechanical, thermal and chemical characteristics. The results showed that polyvinyl alcohol fibre-, steel fibreand hybrid fibre-reinforced concrete suffered a 52%, 40% and 26.23% of loss of initial the compressive strength after 60 cycles of exposure to the conditions. Moreover, due to the hybridisation of concrete, flexural strength and thermal conductivity was increased by 47% and 22%. Thus, hybrid fibrereinforced concrete performed better in retaining higher residual properties and exhibited no spalling of concrete
The significance of macrophage phenotype in cancer and biomaterials
Macrophages have long been known to exhibit heterogeneous and plastic phenotypes. They show functional diversity with roles in homeostasis, tissue repair, immunity and disease. There exists a spectrum of macrophage phenotypes with varied effector functions, molecular determinants, cytokine and chemokine profiles, as well as receptor expression. In tumor microenvironments, the subset of macrophages known as tumor-associated macrophages generates byproducts that enhance tumor growth and angiogenesis, making them attractive targets for anti-cancer therapeutics. With respect to wound healing and the foreign body response, there is a necessity for balance between pro-inflammatory, wound healing, and regulatory macrophages in order to achieve successful implantation of a scaffold for tissue engineering. In this review, we discuss the multitude of ways macrophages are known to be important in cancer therapies and implanted biomaterials
Developing an intervention to facilitate family communication about inherited genetic conditions, and training genetic counsellors in its delivery.
Many families experience difficulty in talking about an inherited genetic condition that affects one or more of them. There have now been a number of studies identifying the issues in detail, however few have developed interventions to assist families. The SPRinG collaborative have used the UK Medical Research Council's guidance on Developing and Evaluating Complex Interventions, to work with families and genetic counsellors (GCs) to co-design a psycho-educational intervention to facilitate family communication and promote better coping and adaptation to living with an inherited genetic condition for parents and their children (<18 years). The intervention is modelled on multi-family discussion groups (MFDGs) used in psychiatric settings. The MFDG was developed and tested over three phases. First focus groups with parents, young people, children and health professionals discussed whether MFDG was acceptable and proposed a suitable design. Using evidence and focus group data, the intervention and a training manual were developed and three GCs were trained in its delivery. Finally, a prototype MFDG was led by a family therapist and co-facilitated by the three GCs. Data analysis showed that families attending the focus groups and intervention thought MFDG highly beneficial, and the pilot sessions had a significant impact on their family' functioning. We also demonstrated that it is possible to train GCs to deliver the MFDG intervention. Further studies are now required to test the feasibility of undertaking a definitive randomised controlled trial to evaluate its effectiveness in improving family outcomes before implementing into genetic counselling practice.The National Institute of Health Research funded the study but any views expressed do not necessarily reflect those of the Authority. Funded by NIHR reference number: RP-DG-1211-10015
Serratamolide is a hemolytic factor produced by Serratia marcescens
Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide, previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis. Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to irritation and infections associated with contact lens use. © 2012 Shanks et al
Symptomatic asymmetry in the first six months of life: differential diagnosis
Asymmetry in infancy is a clinical condition with a wide variation in appearances (shape, posture, and movement), etiology, localization, and severity. The prevalence of an asymmetric positional preference is 12% of all newborns during the first six months of life. The asymmetry is either idiopathic or symptomatic. Pediatricians and physiotherapists have to distinguish symptomatic asymmetry (SA) from idiopathic asymmetry (IA) when examining young infants with a positional preference to determine the prognosis and the intervention strategy. The majority of cases will be idiopathic, but the initial presentation of a positional preference might be a symptom of a more serious underlying disorder. The purpose of this review is to synthesize the current information on the incidence of SA, as well as the possible causes and the accompanying signs that differentiate SA from IA. This review presents an overview of the nine most prevalent disorders in infants in their first six months of life leading to SA. We have discovered that the literature does not provide a comprehensive analysis of the incidence, characteristics, signs, and symptoms of SA. Knowledge of the presented clues is important in the clinical decision making with regard to young infants with asymmetry. We recommend to design a valid and useful screening instrument
"I'm not being rude, I'd want somebody normal" Adolescents' perception of their peers with Tourette's syndrome; an exploratory study
Background: Tourette’s syndrome (TS) is a highly stigmatised condition, and typically developing adolescents’ motives and reason for excluding individuals with TS have not been examined.
Aims: The aim of the study was to understand how TS is conceptualised by adolescents and explore how individuals with TS are perceived by their typically developing peers.
Method: Free text writing and focus groups were used to elicit the views of twenty-two year ten students from a secondary school in South East England. Grounded theory was used to develop an analytical framework.
Result: Participants’ understanding about the condition was construed from misconceptions, unfamiliarity and unanswered questions. Adolescents who conceived TS as a disorder beyond the individual’s control perceived their peers as being deprived of agency and strength and as straying from the boundaries of normalcy. People with TS were viewed as individuals deserving pity, and in need of support. Although participants maintained they had feelings of social politeness towards those with TS, they would avoid initiating meaningful social relationships with them due to fear of “social contamination”. Intergroup anxiety would also inhibit a close degree of social contact. Participants that viewed those with TS as responsible for their condition expressed a plenary desire for social distance. However, these behavioural intentions were not limited to adolescents that elicited inferences of responsibility to people with TS, indicating that attributional models of stigmatisation may be of secondary importance in the case of TS.
Implications for interventions to improve school belonging among youths with TS are discussed
The Gut Fungus Basidiobolus ranarum Has a Large Genome and Different Copy Numbers of Putatively Functionally Redundant Elongation Factor Genes
Fungal genomes range in size from 2.3 Mb for the microsporidian Encephalitozoon intestinalis up to 8000 Mb for Entomophaga aulicae, with a mean genome size of 37 Mb. Basidiobolus, a common inhabitant of vertebrate guts, is distantly related to all other fungi, and is unique in possessing both EF-1α and EFL genes. Using DNA sequencing and a quantitative PCR approach, we estimated a haploid genome size for Basidiobolus at 350 Mb. However, based on allelic variation, the nuclear genome is at least diploid, leading us to believe that the final genome size is at least 700 Mb. We also found that EFL was in three times the copy number of its putatively functionally overlapping paralog EF-1α. This suggests that gene or genome duplication may be an important feature of B. ranarum evolution, and also suggests that B. ranarum may have mechanisms in place that favor the preservation of functionally overlapping genes
Robust Reproducible Resting State Networks in the Awake Rodent Brain
Resting state networks (RSNs) have been studied extensively with functional MRI in humans in health and disease to reflect brain function in the un-stimulated state as well as reveal how the brain is altered with disease. Rodent models of disease have been used comprehensively to understand the biology of the disease as well as in the development of new therapies. RSN reported studies in rodents, however, are few, and most studies are performed with anesthetized rodents that might alter networks and differ from their non-anesthetized state. Acquiring RSN data in the awake rodent avoids the issues of anesthesia effects on brain function. Using high field fMRI we determined RSNs in awake rats using an independent component analysis (ICA) approach, however, ICA analysis can produce a large number of components, some with biological relevance (networks). We further have applied a novel method to determine networks that are robust and reproducible among all the components found with ICA. This analysis indicates that 7 networks are robust and reproducible in the rat and their putative role is discussed
Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma
Abstract
Background
Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR.
Methods
To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization.
Results
Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models.
Conclusions
This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes to the pollution-induced exacerbation of airways responsiveness. Thus arginase may be a therapeutic target to protect susceptible populations against the adverse health effects of air pollution, such as fine particles and ozone, which are two of the major contributors to smog
- …