99 research outputs found

    Intrapreneurial self-capital training: a case study of an Italian university student

    Get PDF
    This chapter presents a case study which describes the application of the Intrapreneurial Self-Capital Training with a final-year postgraduate female biology student, Erica. The chapter presents an overview of theory that is relevant to the world of work and the conceptual dimensions of intrapreneurial self capital (ISC). Training for ISC aims to assist young people to identify their personal strengths in terms of intrapreneurship and career adaptability. A qualitative instrument, the Life Adaptability Qualitative Assessment (LAQuA) was administered before and after the training to detect meaningful changes in the participant’s narratives about career adaptability and enhanced reflexivity. The LAQuA coding system revealed enhancements to the participant’s awareness about her personal intrapreneurial resources and career adaptability. The relevance of ISC to employability and career services in education contexts is discussed along with recommendations for research into ISC training

    The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization

    Get PDF
    15 pagesInternational audienceThe scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef responses to environmental changes such as temperature rise and ocean acidification (OA). In these contexts, several nucleic acid resources were made available. When combined to a recent proteomic analysis of the coral skeletal organic matrix (SOM), they enabled the identification of several skeletal matrix proteins, making A. millepora into an emerging model for biomineralization studies. Here we describe the skeletal microstructure of A. millepora skeleton, together with a functional and biochemical characterization of its occluded SOM that focuses on the protein and saccharidic moieties. The skeletal matrix proteins show a large range of isoelectric points, compositional patterns and signatures. Besides secreted proteins, there are a significant number of proteins with membrane attachment sites such as transmembrane domains and GPI anchors as well as proteins with integrin binding sites. These features show that the skeletal proteins must have strong adhesion properties in order to function in the calcifying space. Moreover this data suggest a molecular connection between the calcifying epithelium and the skeletal tissue during biocalcification. In terms of sugar moieties, the enrichment of the SOM in arabinose is striking, and the monosaccharide composition exhibits the same signature as that of mucus of acroporid corals. Finally, we observe that the interaction of the acetic acid soluble SOM on the morphology of in vitro grown CaCO3 crystals is very pronounced when compared with the calcifying matrices of some mollusks. In light of these results, we wish to commend Acropora millepora as a model for biocalcification studies in scleractinians, from molecular and structural viewpoints

    Ciliary Beating Recovery in Deficient Human Airway Epithelial Cells after Lentivirus Ex Vivo Gene Therapy

    Get PDF
    Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1–deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT–PCR and western blot, respectively. Human airway epithelial cells that were DNAI1–deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease

    Effects of body weight and alcohol consumption on insulin sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a risk factor for the development of insulin resistance, which can eventually lead to type-2 diabetes. Alcohol consumption is a protective factor against insulin resistance, and thus protects against the development of type-2 diabetes. The mechanism by which alcohol protects against the development of type-2 diabetes is not well known. To determine the mechanism by which alcohol improves insulin sensitivity, we fed water or alcohol to lean, control, and obese mice. The aim of this study was to determine whether alcohol consumption and body weights affect overlapping metabolic pathways and to identify specific target genes that are regulated in these pathways.</p> <p>Method</p> <p>Adipose tissue dysfunction has been associated with the development of type-2 diabetes. We assessed possible gene expression alterations in epididymal white adipose tissue (WAT). We obtained WAT from mice fed a calorie restricted (CR), low fat (LF Control) or high fat (HF) diets and either water or 20% ethanol in the drinking water. We screened the expression of genes related to the regulation of energy homeostasis and insulin regulation using a gene array composed of 384 genes.</p> <p>Results</p> <p>Obesity induced insulin resistance and calorie restriction and alcohol improved insulin sensitivity. The insulin resistance in obese mice was associated with the increased expression of inflammatory markers Cd68, Il-6 and Il-1α; in contrast, most of these genes were down-regulated in CR mice. Anti-inflammatory factors such as Il-10 and adrenergic beta receptor kinase 1 (Adrbk1) were decreased in obese mice and increased by CR and alcohol. Also, we report a direct correlation between body weight and the expression of the following genes: Kcnj11 (potassium inwardly-rectifying channel, subfamily J, member 11), Lpin2 (lipin2), and Dusp9 (dual-specificity MAP kinase phosphatase 9).</p> <p>Conclusion</p> <p>We show that alcohol consumption increased insulin sensitivity. Additionally, alterations in insulin sensitivity related with obesity were coupled with alterations in inflammatory genes. We provide evidence that alcohol may improve insulin sensitivity by up-regulating anti-inflammatory genes. Moreover, we have indentified potential gene targets in energy metabolic pathways and signal transducers that may contribute to obesity-related insulin resistance as well as calorie restriction and alcohol-induced insulin sensitivity.</p

    Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro

    Get PDF
    The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 . - by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 . - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis. © 2013 Dias et al

    A phase II study of biweekly dose-intensified oral capecitabine plus irinotecan (bXELIRI) for patients with advanced or metastatic gastric cancer

    Get PDF
    Capecitabine, a prodrug of 5-FU, has been reported to generate maximal tumour activity at tumour sites and/or to improve drug tolerability as compared with 5-FU infusion, and it has also been demonstrated to act synergistically with irinotecan against some solid cancers. A previous study concluded that dose-intensified biweekly capecitabine seems to be more effective at increasing both response rate and progression-free survival time than conventional dose and schedule of capecitabine in colon cancer. We conducted this study to ascertain the efficacy and toxicity of dose-intensified biweekly capecitabine and irinotecan combination chemotherapy in chemotherapy-naïve advanced or metastatic gastric cancer patients. Patients were treated with irinotecan 130 mg m−2 intravenously for 90 min on days 1 and 15. Capecitabine at 3500 mg m−2 day−1, divided into two sessions per day, was administered for seven consecutive days from days 1 and 15, and followed by a 7-day drug-free period, respectively. Fifty-five eligible patients were enrolled in this study from November 2003 to April 2006. There were 22 women and 33 men: median patient age was 54 years (range: 27–81). A total of 200 treatment cycles were administered at a median number of four per patient (range: 1–9). Intent-to-treatment analysis showed that one patient achieved complete response (1.8%), 23 partial response (41.8%), 15 stable disease (27.3%), 10 progressive disease (18.2%) and 6 were non-evaluable (10.9%). The overall response rate was 43.6% (95% confidence interval: 30.2–56.9). The common grade 3–4 toxicities were neutropenia in 12 (21.8%), nausea/vomiting in 3 (5.4%) and diarrhea in 4 (7.2%) patients. Median time to progression was 5 months (range: 0.5–11 months), median survival duration was 11 months (range: 0.5–45 months) and median response duration was 6 months (range: 0.5–9 months). Biweekly dose-intensified capecitabine and irinotecan combination chemotherapy was active for the treatment of advanced or metastatic gastric cancers with a tolerable safety profile

    Diet and food strategies in a southern al-Andalusian urban environment during Caliphal period, ecija, Sevilla

    Get PDF
    The Iberian medieval period is unique in European history due to the widespread socio-cultural changes that took place after the arrival of Arabs, Berbers and Islam in 711 AD. Recently, isotopic research has been insightful on dietary shifts, status, resource availability and the impact of environment. However, there is no published isotopic research exploring these factors in southern Iberian populations, and as the history of this area differs to the northern regions, this leaves a significant lacuna in our knowledge. This research fills this gap via isotopic analysis of human (n = 66) and faunal (n = 13) samples from the 9th to the 13th century Écija, a town renowned for high temperatures and salinity. Stable carbon (δ13C) and nitrogen (δ15N) isotopes were assessed from rib collagen, while carbon (δ13C) values were derived from enamel apatite. Human diet is consistent with C3 plant consumption with a very minor contribution of C4 plants, an interesting feature considering the suitability of Écija to C4 cereal production. δ15N values vary among adults, which may suggest variable animal protein consumption or isotopic variation within animal species due to differences in foddering. Consideration of δ13C collagen and apatite values together may indicate sugarcane consumption, while moderate δ15N values do not suggest a strong aridity or salinity effect. Comparison with other Iberian groups shows similarities relating to time and location rather than by religion, although more multi-isotopic studies combined with zooarchaeology and botany may reveal subtle differences unobservable in carbon and nitrogen collagen studies alone.OLC is funded by Plan Galego I2C mod.B (ED481D 2017/014). The research was partially funded by the projects “Galician Paleodiet” and by Consiliencia network (ED 431D2017/08) Xunta de GaliciaS

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis

    Get PDF
    Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in differentially expressed in FDCP6 homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy
    corecore