47 research outputs found

    Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles

    Get PDF
    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust

    Hormone-Dependent Expression of a Steroidogenic Acute Regulatory Protein Natural Antisense Transcript in MA-10 Mouse Tumor Leydig Cells

    Get PDF
    Cholesterol transport is essential for many physiological processes, including steroidogenesis. In steroidogenic cells hormone-induced cholesterol transport is controlled by a protein complex that includes steroidogenic acute regulatory protein (StAR). Star is expressed as 3.5-, 2.8-, and 1.6-kb transcripts that differ only in their 3β€²-untranslated regions. Because these transcripts share the same promoter, mRNA stability may be involved in their differential regulation and expression. Recently, the identification of natural antisense transcripts (NATs) has added another level of regulation to eukaryotic gene expression. Here we identified a new NAT that is complementary to the spliced Star mRNA sequence. Using 5β€² and 3β€² RACE, strand-specific RT-PCR, and ribonuclease protection assays, we demonstrated that Star NAT is expressed in MA-10 Leydig cells and steroidogenic murine tissues. Furthermore, we established that human chorionic gonadotropin stimulates Star NAT expression via cAMP. Our results show that sense-antisense Star RNAs may be coordinately regulated since they are co-expressed in MA-10 cells. Overexpression of Star NAT had a differential effect on the expression of the different Star sense transcripts following cAMP stimulation. Meanwhile, the levels of StAR protein and progesterone production were downregulated in the presence of Star NAT. Our data identify antisense transcription as an additional mechanism involved in the regulation of steroid biosynthesis

    MicroRNA networks direct neuronal development and plasticity

    Get PDF
    MicroRNAs (miRNAs) constitute a class of small, non-coding RNAs that act as post-transcriptional regulators of gene expression. In neurons, the functions of individual miRNAs are just beginning to emerge, and recent studies have elucidated roles for neural miRNAs at various stages of neuronal development and maturation, including neurite outgrowth, dendritogenesis, and spine formation. Notably, miRNAs regulate mRNA translation locally in the axosomal and synaptodendritic compartments, and thereby contribute to the dynamic spatial organization of axonal and dendritic structures and their function. Given the critical role for miRNAs in regulating early brain development and in mediating synaptic plasticity later in life, it is tempting to speculate that the pathology of neurological disorders is affected by altered expression or functioning of miRNAs. Here we provide an overview of recently identified mechanisms of neuronal development and plasticity involving miRNAs, and the consequences of miRNA dysregulation

    The Genetic Signatures of Noncoding RNAs

    Get PDF
    The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non–protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses

    Circulation of Brucellaceae, Anaplasma and Ehrlichia spp. in borderline of Iran, Azerbaijan, and Armenia

    Get PDF
    Objective: To estimate the infection of ticks to Anaplasma, Ehrlichia, Babesia, Theileria, and Brucellaceae using molecular methods in borderline of Iran, Azerbaijan, and Armenia. Methods: Totally, 2 022 ticks were collected from different livestock. Then, species were diagnosed under stereomicroscope according to valid morphological keys. Tick DNA was extracted followed by PCR to detect Anaplasma, Ehrlichia, Theileria, Babesia and Brucellaceae infection in ticks. Results: A total of 498 males [24.62% (95% CI 22.76%-26.57%)], 741 females [36.64% (95% CI 34.54%-38.79%)], 782 nymphs [38.67% (95% CI 36.55%-40.84%)] and 1 larva [0.04% (95% CI 0.00%-0.28%)] were identified. Among identified samples, we found four genera including Hyalomma, Rhipicephalus, Haemaphysalis, and Dermacentor. Molecular assay revealed that the prevalence of ticks to Anaplasma or Ehrlichia, and Brucellaceae was 22.02% (95% CI 16.01%-29.06%) and 15.03% (95% CI 9.43%-22.26%), respectively. Phylogenetic analysis showed that the identified Anaplasma sp. had the most similarity with Anaplasma centrale, Anaplasma platys, Anaplasma camelii, and Anaplasma phagocytophilum, submitted in GenBank. Furthermore, the detected Ehrlichia sp. and Brucellaceae bacterium had the most similarity with Ehrlichia ruminantium and Mycoplana peli, respectively. However, no sign of the presence of Theileria and Babesia spp. was seen in the studied samples. Conclusions: Anaplasmosis, ehrlichiosis and brucellosis should be considered as important health threats in northwestern Iran and consistent monitoring on infection of ticks and livestock should be performed regularly
    corecore