6,679 research outputs found
An interactive speech training system with virtual reality articulation for Mandarin-speaking hearing impaired children
The present project involved the development of a novel interactive speech training system based on virtual reality articulation and examination of the efficacy of the system for hearing impaired (HI) children. Twenty meaningful Mandarin words were presented to the HI children via a 3-D talking head during articulation training. Electromagnetic Articulography (EMA) and graphic transform technology were used to depict movements of various articulators. In addition, speech corpuses were organized in listening and speaking training modules of the system to help improve language skills of the HI children. Accuracy of virtual reality articulatory movement was evaluated through a series of experiments. Finally, a pilot test was performed to train two HI children using the system. Preliminary results showed improvement in speech production by the HI children, and the system was recognized as acceptable and interesting for children. It can be concluded that the training system is effective and valid in articulation training for HI children. © 2013 IEEE.published_or_final_versio
Response of embryonic coral reef fishes (Pomacentridae: Amphiprion spp.) to noise
We investigated the ability of embryonic clownfishes Amphiprion ephippium and A. rubrocinctus to detect sound during incubation in benthic nests. The heart rates of embryos within eggs were monitored as the young fish were exposed to sounds in the range of 100 to 1200 Hz at levels of 80 to 150 dB (re 1 μPa at 1 m) on each day of incubation. We found that, from 3 d after fertilisation, the heart rates of the embryos significantly increased when exposed to sound. As the embryos developed, a response in heart rate was found over a broader spectrum of sound (from 400 to 700 Hz at 3 d to a maximum of 100 to 1200 kHz at 9 d after fertilisation) and sensitivity also increased, with response threshold minima at 700 Hz dropping from 139.1 dB at 3 d to 88.3 dB at 9 d after fertilisation. We discuss these findings with respect to recent work that demonstrates the importance of sound as a settlement cue in coral reef fishes. © Inter-Research 2005.Natural Environment Research Council postgraduate fellowshipBritish AssociationInstitute of Museum and Library Service of the US Department of EducationNational Institute of Mental HealthNational Organization for Hearing ResearchKentucky Water Resources Research InstituteUniversity of Kentucky Research Committee grantAustralian Institute of Marine Science gran
Nonlinear dynamics of voices in esophageal phonation
The present study investigated the difference in voice perturbation measures and parameters obtained from nonlinear dynamic analysis between normal laryngeal phonation and standard esophageal (SE) phonation. Jitter, shimmer, correlation dimension and Kolmogorov entropy were measured from 10 SE and 10 normal male speakers of Cantonese. Jitter and shimmer values were significantly higher for SE than laryngeal voice. But jitter values were found to be significantly different when length of sound samples was altered. In addition, both correlation dimension and Kolmogorov entropy values were significantly higher for SE than laryngeal voice and sample length did not appear to affect the result. These results suggest that SE voices are more chaotic than laryngeal voice. It follows that the technique of nonlinear dynamic analysis may be more reliable and stable for evaluating the acoustic characteristics of SE voices. © 2011 IEEE.published_or_final_versio
Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study
Background
Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood.
Methods
We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution.
Results
Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms).
Conclusion
Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve
How to suppress undesired synchronization
It is delightful to observe the emergence of synchronization in the blinking
of fireflies to attract partners and preys. Other charming examples of
synchronization can also be found in a wide range of phenomena such as, e.g.,
neurons firing, lasers cascades, chemical reactions, and opinion formation.
However, in many situations the formation of a coherent state is not pleasant
and should be mitigated. For example, the onset of synchronization can be the
root of epileptic seizures, traffic congestion in communication networks, and
the collapse of constructions. Here we propose the use of contrarians to
suppress undesired synchronization. We perform a comparative study of different
strategies, either requiring local or total knowledge of the system, and show
that the most efficient one solely requires local information. Our results also
reveal that, even when the distribution of neighboring interactions is narrow,
significant improvement in mitigation is observed when contrarians sit at the
highly connected elements. The same qualitative results are obtained for
artificially generated networks as well as two real ones, namely, the Routers
of the Internet and a neuronal network
Clonal karyotype evolution involving ring chromosome 1 with myelodysplastic syndrome subtype RAEB-t progressing into acute leukemia
s Karyotypic evolution is a well-known phenomenon in patients with malignant hernatological disorders during disease progression. We describe a 50-year-old male patient who had originally presented with pancytopenia in October 1992. The diagnosis of a myelodysplastic syndrome (MDS) FAB subtype RAEB-t was established in April 1993 by histological bone marrow (BM) examination, and therapy with low-dose cytosine arabinoside was initiated. In a phase of partial hernatological remission, cytogenetic assessment in August 1993 revealed a ring chromosome 1 in 13 of 21 metaphases beside BM cells with normal karyotypes {[}46,XY,r(1)(p35q31)/46,XY]. One month later, the patient progressed to an acute myeloid leukemia (AML), subtype M4 with 40% BM blasts and cytogenetic examination showed clonal evolution by the appearance of additional numerical aberrations in addition to the ring chromosome{[}46,XY,r(1),+8,-21/45,XY,r(1),+8,-21,-22/46, XY]. Intensive chemotherapy and radiotherapy was applied to induce remission in preparation for allogeneic bone marrow transplantation (BMT) from the patient's HLA-compatible son. After BMT, complete remission was clinically, hematologically and cytogenetically (normal male karyotype) confirmed. A complete hematopoietic chimerism was demonstrated. A relapse in January 1997 was successfully treated using donor lymphocyte infusion and donor peripheral blood stem cells (PB-SC) in combination with GM-CSF as immunostimulating agent in April 1997, and the patient's clinical condition remained stable as of January 2005. This is an interesting case of a patient with AML secondary to MDS. With the ring chromosome 1 we also describe a rare cytogenetic abnormality that predicted the poor prognosis of the patient, but the patient could be cured by adoptive immunotherapy and the application of donor's PB-SC. This case confirms the value of cytogenetic analysis in characterizing the malignant clone in hernatological neoplasias, the importance of controlling the quality of an induced remission and of the detection of a progress of the disease. Copyright (c) 2006 S. Karger AG, Basel
Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response
Dramatic rise of mutators has been found to accompany adaptation of bacteria
in response to many kinds of stress. Two views on the evolutionary origin of
this phenomenon emerged: the pleiotropic hypothesis positing that it is a
byproduct of environmental stress or other specific stress response mechanisms
and the second order selection which states that mutators hitchhike to fixation
with unrelated beneficial alleles. Conventional population genetics models
could not fully resolve this controversy because they are based on certain
assumptions about fitness landscape. Here we address this problem using a
microscopic multiscale model, which couples physically realistic molecular
descriptions of proteins and their interactions with population genetics of
carrier organisms without assuming any a priori fitness landscape. We found
that both pleiotropy and second order selection play a crucial role at
different stages of adaptation: the supply of mutators is provided through
destabilization of error correction complexes or fluctuations of production
levels of prototypic mismatch repair proteins (pleiotropic effects), while rise
and fixation of mutators occur when there is a sufficient supply of beneficial
mutations in replication-controlling genes. This general mechanism assures a
robust and reliable adaptation of organisms to unforeseen challenges. This
study highlights physical principles underlying physical biological mechanisms
of stress response and adaptation
High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines.
Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control. Here we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM revealed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo
Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis
Increased glucose uptake mediated by glucose
transporters and reliance on glycolysis are common features
of malignant cells. Hypoxia-inducible factor-1α supports the
adaptation of hypoxic cells by inducing genes related to
glucose metabolism. The contribution of glucose transporter
(GLUT) and hypoxia-inducible factor-1α (HIF-1α) activity to
tumor behavior and their prognostic value in head and neck
cancers remains unclear. The aim of this study was to examine
the predictive value of GLUT1, GLUT3, and HIF-1α messenger
RNA (mRNA)/protein expression as markers of tumor
aggressiveness and prognosis in laryngeal cancer. The level of
hypoxia/metabolic marker genes was determined in 106 squamous
cell laryngeal cancer (SCC) and 73 noncancerous
matched mucosa (NCM) controls using quantitative realtime
PCR. The related protein levels were analyzed by
Western blot. Positive expression of SLC2A1, SLC2A3, and
HIF-1α genes was noted in 83.9, 82.1, and 71.7 % of SCC
specimens and in 34.4, 59.4, and 62.5 % of laryngeal cancer
samples. Higher levels of mRNA/protein for GLUT1 and
HIF-1α were noted in SCC compared to NCM (p<0.05).
SLC2A1 was found to have a positive relationship with grade,
tumor front grading (TFG) score, and depth and mode of
invasion (p<0.05). SLC2A3 was related to grade and invasion
type (p<0.05). There were also relationships of HIF-1α with
pTNM, TFG scale, invasion depth and mode, tumor recurrences,
and overall survival (p<0.05). In addition, more advanced
tumors were found to be more likely to demonstrate
positive expression of these proteins. In conclusion, the
hypoxia/metabolic markers studied could be used as molecular
markers of tumor invasiveness in laryngeal cancer.This work was supported, in part, by the statutory
fund of the Department of Cytobiochemistry, University of Łódź, Poland
(506/811), and by grant fromtheNational Science Council, Poland (N403
043 32/2326)
Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background
The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability
- …
