635 research outputs found

    Hot Jupiters from Secular Planet--Planet Interactions

    Full text link
    About 25 per cent of `hot Jupiters' (extrasolar Jovian-mass planets with close-in orbits) are actually orbiting counter to the spin direction of the star. Perturbations from a distant binary star companion can produce high inclinations, but cannot explain orbits that are retrograde with respect to the total angular momentum of the system. Such orbits in a stellar context can be produced through secular (that is, long term) perturbations in hierarchical triple-star systems. Here we report a similar analysis of planetary bodies, including both octupole-order effects and tidal friction, and find that we can produce hot Jupiters in orbits that are retrograde with respect to the total angular momentum. With distant stellar mass perturbers, such an outcome is not possible. With planetary perturbers, the inner orbit's angular momentum component parallel to the total angular momentum need not be constant. In fact, as we show here, it can even change sign, leading to a retrograde orbit. A brief excursion to very high eccentricity during the chaotic evolution of the inner orbit allows planet-star tidal interactions to rapidly circularize that orbit, decoupling the planets and forming a retrograde hot Jupiter.Comment: accepted for publication by Nature, 3 figures (version after proof - some typos corrected

    What Was the Set of Ubiquitin and Ubiquitin-Like Conjugating Enzymes in the Eukaryote Common Ancestor?

    Get PDF
    Ubiquitin (Ub)-conjugating enzymes (E2) are key enzymes in ubiquitination or Ub-like modifications of proteins. We searched for all proteins belonging to the E2 enzyme super-family in seven species (Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Arabidopsis thaliana) to identify families and to reconstruct each family’s phylogeny. Our phylogenetic analysis of 207 genes led us to define 17 E2 families, with 37 E2 genes, in the human genome. The subdivision of E2 into four classes did not correspond to the phylogenetic tree. The sequence signature HPN (histidine–proline–asparagine), followed by a tryptophan residue at 16 (up to 29) amino acids, was highly conserved. When present, the active cysteine was found 7 to 8 amino acids from the C-terminal end of HPN. The secondary structures were characterized by a canonical alpha/beta fold. Only family 10 deviated from the common organization because the proteins were devoid of enzymatic activity. Family 7 had an insertion between beta strands 1 and 2; families 3, 5 and 14 had an insertion between the active cysteine and the conserved tryptophan. The three-dimensional data of these proteins highlight a strong structural conservation of the core domain. Our analysis shows that the primitive eukaryote ancestor possessed a diversified set of E2 enzymes, thus emphasizing the importance of the Ub pathway. This comprehensive overview of E2 enzymes emphasizes the diversity and evolution of this superfamily and helps clarify the nomenclature and true orthologies. A better understanding of the functions of these enzymes is necessary to decipher several human diseases

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    Salmonella enterica ssp. arizonae infection in a 43-year-old Italian man with hypoglobulinemia: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p><it>Salmonella enterica </it>ssp. <it>arizonae </it>is an uncommon human pathogen with serious infections reported in immunocompromised hosts. In Europe, only a few cases have been described. Patients with this infection usually have a history of contact with reptiles or travel abroad. We present a case report of infection in a patient with hypoglobulinemia and a literature review.</p> <p>Case presentation</p> <p>We describe the case of a 43-year-old Caucasian Italian man with hypoglobulinemia who presented to our hospital with sepsis and diarrhea. A stool culture yielded <it>S. enterica </it>ssp. <it>arizonae</it>. Our patient was treated with oral ciprofloxacin and made a full recovery. We also present a review of the cases of <it>S. enterica </it>ssp. <it>arizonae </it>infections previously reported in Europe.</p> <p>Conclusions</p> <p>The majority of infections from <it>S. enterica </it>ssp. <it>arizonae </it>occur in patients who are immunocompromised. Data from the literature suggests that it may be difficult to eradicate the bacteria and thus, prolonged antibiotic courses are often used. It would be advisable for clinicians to investigate for pre-existing immune dysfunction if <it>S. enterica </it>ssp. <it>arizonae </it>is isolated. In Italy, although there have only been a few cases, the likely route of transmission remains unclear and requires further surveillance.</p

    The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection

    Get PDF
    Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 Å resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ß–ß–a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel β-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    TESS Hunt for Young and Maturing Exoplanets (THYME). III. A Two-planet System in the 400 Myr Ursa Major Group

    Get PDF
    Exoplanets can evolve significantly between birth and maturity as their atmospheres, orbits, and structures are shaped by their environment. Young planets (<<1 Gyr) offer the opportunity to probe these sculpting processes. However, most of the known young planets orbit prohibitively faint stars. We present the discovery of two planets transiting HD 63433 (TOI 1726, TIC 130181866), a young Sun-like (M=0.99±0.03M_*=0.99\pm0.03) star. Through kinematics, lithium abundance, and rotation, we confirm that HD 63433 is a member of the Ursa Major moving group (τ=414±23\tau=414\pm23 Myr). Based on the TESS light curve and updated stellar parameters, the planet radii are 2.15±0.10R2.15\pm0.10R_\oplus and 2.67±0.12R2.67\pm0.12R_\oplus, the orbital periods are 7.11 and 20.55 days, and the orbital eccentricities are lower than abut 0.2. Using HARPS-N velocities, we measure the Rossiter-McLaughlin signal of the inner planet, demonstrating the orbit is prograde. Since the host star is bright (V=6.9), both planets are amenable to transmission spectroscopy, radial velocity measurements of their masses, and more precise determination of the stellar obliquity. This system is therefore poised to play an important role in our understanding of planetary system evolution in the first billion years after formation
    corecore