97 research outputs found

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic

    Traffic-Related Air Pollution and DNA Damage: A Longitudinal Study in Taiwanese Traffic Conductors

    Get PDF
    BACKGROUND: There is accumulating epidemiologic evidence that exposure to traffic-related air pollutants, including particulate matter (PM) and polyaromatic hydro carbons (PAHs), plays a role in etiology and prognosis of a large scale of illnesses, although the role of specific causal agents and underlying mechanisms for different health outcomes remains unknown. OBJECTIVE: Our general objective was to assess the relations between personal exposure to traffic exhausts, in particular ambient PM(2.5) and PAHs, and the occurrence of DNA strand breaks by applying personal monitoring of PM and biomarkers of exposure (urinary 1-hydroxypyrene-glucuronide, 1-OHPG) and effect (urinary 8-hydroxydeoxyguanosine, 8-OHdG and DNA strand breaks). METHODS: We recruited 91 traffic conductors and 53 indoor office workers between May 2009 and June 2011 in Taipei City, Taiwan. We used PM(2.5) personal samplers to collect breathing-zone particulate PAHs samples. Spot urine and blood samples after work shift of 2 consecutive days were analyzed for 1-OHPG, 8-OHdG and DNA strand breaks, respectively. Statistical methods included linear regression and mixed models. RESULTS: Urinary 8-OHdG levels and the occurrence of DNA strand breaks in traffic conductors significantly exceeded those in indoor office workers in mixed models. Particulate PAHs levels showed a positive association with urinary 1-OHPG in the regression model (β = 0.056, p = 0.01). Urinary 1-OHPG levels were significantly associated with urinary 8-OHdG levels in the mixed model (β = 0.101, p = 0.023). Our results provide evidence that exposure to fine particulates causes DNA damage. Further, particulate PAHs could be biologically active constituents of PM(2.5) with reference to the induction of oxidative DNA damages

    Milk exosomes: beyond dietary microRNAs

    Get PDF
    Extracellular vesicles deliver a variety of cargos to recipient cells, including the delivery of cargos in dietary vesicles from bovine milk to non-bovine species. The rate of discovery in this important line of research is slowed by a controversy whether the delivery and bioactivity of a single class of vesicle cargos, microRNAs, are real or not. This opinion paper argues that the evidence in support of the bioavailability of microRNAs encapsulated in dietary exosomes outweighs the evidence produced by scholars doubting that phenomenon is real. Importantly, this paper posits that the time is ripe to look beyond microRNA cargos and pursue innovative pathways through which dietary exosomes alter metabolism. Here, we highlight potentially fruitful lines of exploration

    Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment. Because increased ROS accumulation and/or unrepaired DNA damage can lead to initiation and progression of cancer and we had identified a number of oxidative stress and DNA repair proteins that influence estrogen responsiveness of MCF-7 breast cancer cells, it seemed possible that these proteins might be differentially expressed in normal mammary tissue, benign hyperplasia (BH), ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC).</p> <p>Methods</p> <p>Immunohistochemistry was used to examine the expression of a number of oxidative stress proteins, DNA repair proteins, and damage markers in 60 human mammary tissues which were classified as BH, DCIS or IBC. The relative mean intensity was determined for each tissue section and ANOVA was used to detect statistical differences in the relative expression of BH, DCIS and IBC compared to normal mammary tissue.</p> <p>Results</p> <p>We found that a number of these proteins were overexpressed and that the cellular localization was altered in human breast cancer tissue.</p> <p>Conclusions</p> <p>Our studies suggest that oxidative stress and DNA repair proteins not only protect normal cells from the damaging effects of ROS, but may also promote survival of mammary tumor cells.</p

    Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models

    Get PDF
    Cytotoxic chemotherapy is an effective treatment for invasive breast cancer. However, experimental studies in mice also suggest that chemotherapy has pro-metastatic effects. Primary tumours release extracellular vesicles (EVs), including exosomes, that can facilitate the seeding and growth of metastatic cancer cells in distant organs, but the effects of chemotherapy on tumour-derived EVs remain unclear. Here we show that two classes of cytotoxic drugs broadly employed in pre-operative (neoadjuvant) breast cancer therapy, taxanes and anthracyclines, elicit tumour-derived EVs with enhanced pro-metastatic capacity. Chemotherapy-elicited EVs are enriched in annexin A6 (ANXA6), a Ca2+-dependent protein that promotes NF-κB-dependent endothelial cell activation, Ccl2 induction and Ly6C+CCR2+ monocyte expansion in the pulmonary pre-metastatic niche to facilitate the establishment of lung metastasis. Genetic inactivation of Anxa6 in cancer cells or Ccr2 in host cells blunts the prometastatic effects of chemotherapy-elicited EVs. ANXA6 is detected, and potentially enriched, in the circulating EVs of breast cancer patients undergoing neoadjuvant chemotherapy

    RNA delivery by extracellular vesicles in mammalian cells and its applications.

    Get PDF
    The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications

    Targeting microRNAs as key modulators of tumor immune response

    Full text link

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link
    corecore