208 research outputs found
Interferon-λ rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease
Tissue fibrosis is a core pathologic process that contributes to mortality in ∼45% of the population and is likely to be influenced by the host genetic architecture. Here we demonstrate, using liver disease as a model, that a single-nucleotide polymorphism (rs12979860) in the intronic region of interferon-λ4 (IFNL4) is a strong predictor of fibrosis in an aetiology-independent manner. In a cohort of 4,172 patients, including 3,129 with chronic hepatitis C (CHC), 555 with chronic hepatitis B (CHB) and 488 with non-alcoholic fatty liver disease (NAFLD), those with rs12979860CC have greater hepatic inflammation and fibrosis. In CHC, those with rs12979860CC also have greater stage-constant and stage-specific fibrosis progression rates (P<0.0001 for all). The impact of rs12979860 genotypes on fibrosis is maximal in young females, especially those with HCV genotype 3. These findings establish rs12979860 genotype as a strong aetiology-independent predictor of tissue inflammation and fibrosis
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response
MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe
Fine Mapping the Spatial Distribution and Concentration of Unlabeled Drugs within Tissue Micro-Compartments Using Imaging Mass Spectrometry
Readouts that define the physiological distributions of drugs in tissues are an unmet challenge and at best imprecise, but are needed in order to understand both the pharmacokinetic and pharmacodynamic properties associated with efficacy. Here we demonstrate that it is feasible to follow the in vivo transport of unlabeled drugs within specific organ and tissue compartments on a platform that applies MALDI imaging mass spectrometry to tissue sections characterized with high definition histology. We have tracked and quantified the distribution of an inhaled reference compound, tiotropium, within the lungs of dosed rats, using systematic point by point MS and MS/MS sampling at 200 µm intervals. By comparing drug ion distribution patterns in adjacent tissue sections, we observed that within 15 min following exposure, tiotropium parent MS ions (mass-to-charge; m/z 392.1) and fragmented daughter MS/MS ions (m/z 170.1 and 152.1) were dispersed in a concentration gradient (80 fmol-5 pmol) away from the central airways into the lung parenchyma and pleura. These drug levels agreed well with amounts detected in lung compartments by chemical extraction. Moreover, the simultaneous global definition of molecular ion signatures localized within 2-D tissue space provides accurate assignment of ion identities within histological landmarks, providing context to dynamic biological processes occurring at sites of drug presence. Our results highlight an important emerging technology allowing specific high resolution identification of unlabeled drugs at sites of in vivo uptake and retention
Association between respiratory tract diseases and secondhand smoke exposure among never smoking flight attendants: a cross-sectional survey
<p>Abstract</p> <p>Background</p> <p>Little is known about long-term adverse health consequences experienced by flight attendants exposed to secondhand smoke (SHS) during the time smoking was allowed on airplanes. We undertook this study to evaluate the association between accumulated flight time in smoky airplane cabins and respiratory tract diseases in a cohort of never smoking flight attendants.</p> <p>Methods</p> <p>We conducted a mailed survey in a cohort of flight attendants. Of 15,000 mailed questionnaires, 2053 (14%) were completed and returned. We excluded respondents with a personal history of smoking (n = 748) and non smokers with a history of respiratory tract diseases before the age of 18 years (n = 298). The remaining 1007 respondents form the study sample.</p> <p>Results</p> <p>The overall study sample was predominantly white (86%) and female (89%), with a mean age of 54 years. Overall, 69.7% of the respondents were diagnosed with at least one respiratory tract disease. Among these respondents, 43.4% reported a diagnosis of sinusitis, 40.3% allergies, 30.8% bronchitis, 23.2% middle ear infections, 13.6% asthma, 13.4% hay fever, 12.5% pneumonia, and 2.0% chronic obstructive pulmonary disease. More hours in a smoky cabin were observed to be significantly associated with sinusitis (OR = 1.21; p = 0.024), middle ear infections (OR = 1.30; p = 0.006), and asthma (OR = 1.26; p = 0.042).</p> <p>Conclusion</p> <p>We observed a significant association between hours of smoky cabin exposure and self-reported reported sinusitis, middle ear infections, and asthma. Our findings suggest a dose-response between duration of SHS exposure and diseases of the respiratory tract. Our findings add additional evidence to the growing body of knowledge supporting the need for widespread implementation of clean indoor air policies to decrease the risk of adverse health consequences experienced by never smokers exposed to SHS.</p
Reduced Exercise Tolerance and Pulmonary Capillary Recruitment with Remote Secondhand Smoke Exposure
RATIONALE: Flight attendants who worked on commercial aircraft before the smoking ban in flights (pre-ban FAs) were exposed to high levels of secondhand smoke (SHS). We previously showed never-smoking pre-ban FAs to have reduced diffusing capacity (Dco) at rest. METHODS: To determine whether pre-ban FAs increase their Dco and pulmonary blood flow (Qc) during exercise, we administered a symptom-limited supine-posture progressively increasing cycle exercise test to determine the maximum work (watts) and oxygen uptake (VO2) achieved by FAs. After 30 min rest, we then measured Dco and Qc at 20, 40, 60, and 80 percent of maximum observed work. RESULTS: The FAs with abnormal resting Dco achieved a lower level of maximum predicted work and VO2 compared to those with normal resting Dco (mean±SEM; 88.7±2.9 vs. 102.5±3.1%predicted VO2; p = 0.001). Exercise limitation was associated with the FAs' FEV(1) (r = 0.33; p = 0.003). The Dco increased less with exercise in those with abnormal resting Dco (mean±SEM: 1.36±0.16 vs. 1.90±0.16 ml/min/mmHg per 20% increase in predicted watts; p = 0.020), and amongst all FAs, the increase with exercise seemed to be incrementally lower in those with lower resting Dco. Exercise-induced increase in Qc was not different in the two groups. However, the FAs with abnormal resting Dco had less augmentation of their Dco with increase in Qc during exercise (mean±SEM: 0.93±0.06 vs. 1.47±0.09 ml/min/mmHg per L/min; p<0.0001). The Dco during exercise was inversely associated with years of exposure to SHS in those FAs with ≥10 years of pre-ban experience (r = -0.32; p = 0.032). CONCLUSIONS: This cohort of never-smoking FAs with SHS exposure showed exercise limitation based on their resting Dco. Those with lower resting Dco had reduced pulmonary capillary recruitment. Exposure to SHS in the aircraft cabin seemed to be a predictor for lower Dco during exercise
Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork
Lithium salt has been widely used in treatment of Bipolar Disorder, a mental disturbance associated with circadian rhythm disruptions. Lithium mildly but consistently lengthens circadian period of behavioural rhythms in multiple organisms. To systematically address the impacts of lithium on circadian pacemaking and the underlying mechanisms, we measured locomotor activity in mice in vivo following chronic lithium treatment, and also tracked clock protein dynamics (PER2::Luciferase) in vitro in lithium-treated tissue slices/cells. Lithium lengthens period of both the locomotor activity rhythms, as well as the molecular oscillations in the suprachiasmatic nucleus, lung tissues and fibroblast cells. In addition, we also identified significantly elevated PER2::LUC expression and oscillation amplitude in both central and peripheral pacemakers. Elevation of PER2::LUC by lithium was not associated with changes in protein stabilities of PER2, but instead with increased transcription of Per2 gene. Although lithium and GSK3 inhibition showed opposing effects on clock period, they acted in a similar fashion to up-regulate PER2 expression and oscillation amplitude. Collectively, our data have identified a novel amplitude-enhancing effect of lithium on the PER2 protein rhythms in the central and peripheral circadian clockwork, which may involve a GSK3-mediated signalling pathway. These findings may advance our understanding of the therapeutic actions of lithium in Bipolar Disorder or other psychiatric diseases that involve circadian rhythm disruptions
Regulation of BMAL1 Protein Stability and Circadian Function by GSK3β-Mediated Phosphorylation
Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3beta signaling pathway regulates BMAL1 protein stability and activity.GSK3beta phosphorylates BMAL1 specifically on Ser 17 and Thr 21 and primes it for ubiquitylation. In the absence of GSK3beta-mediated phosphorylation, BMAL1 becomes stabilized and BMAL1 dependent circadian gene expression is dampened. Dopamine D2 receptor mediated signaling, known to control the Akt-GSK3beta pathway, influences BMAL1 stability and in vivo circadian gene expression in striatal neurons.These findings uncover a previously unknown mechanism of circadian clock control. The GSK3beta kinase phosphorylates BMAL1, an event that controls the stability of the protein and the amplitude of circadian oscillation. BMAL1 phosphorylation appears to be an important regulatory step in maintaining the robustness of the circadian clock
Associations between respiratory illnesses and secondhand smoke exposure in flight attendants: A cross-sectional analysis of the Flight Attendant Medical Research Institute Survey
Abstract Background Secondhand tobacco smoke (SHS) is associated with increased risk of respiratory illness, cancer, and cardiovascular disease. Prior to smoking bans on airlines in the late 1980s, flight attendants were exposed to a significant amount of SHS. In the present study, we examine associations between flight attendant SHS exposure and development of respiratory illnesses and cardiovascular disease. Methods Between December 2006 and October 2010, three hundred sixty-two flight attendants completed an online questionnaire with information regarding experience as a flight attendant, medical history, smoking history, and SHS exposure. Rates of illnesses in flight attendants were compared with an age and smoking history matched population sample from NHANES 2005-2006. Logistic regression analysis was used to examine the association of reported medical conditions and pre-ban years of exposure. Results Compared with the sample from NHANES 2005-2006, flight attendants had increased prevalence of chronic bronchitis (11.7% vs. 7.2%, p < 0.05), emphysema/COPD (3.2% vs. 0.9%, p < 0.03), and sinus problems (31.5% vs. 20.9%, p < 0.002), despite a lower prevalence of medical illnesses including high blood pressure, diabetes, high cholesterol, heart failure, cancer, and thyroid disease. Amongst flight attendants who reported never smoking over their lifetimes, there was not a significant association between years of service as a flight attendant in the pre-smoking ban era and illnesses. However, in this same group, there was a significantly increased risk of daily symptoms (vs. no symptoms) of nasal congestion, throat, or eye irritation per 10-year increase of years of service as a flight attendant prior to the smoking ban (OR 2.14, 95% CI 1.41 - 3.24). Conclusions Flight attendants experience increased rates of respiratory illnesses compared to a population sample. The frequency of symptoms of nasal congestion, throat or eye irritation is associated with occupational SHS exposure in the pre-smoking ban era
The reasons why Pakistan might be at high risk of Crimean Congo haemorrhagic fever epidemic; a scoping review of the literature
- …
