227 research outputs found
A “reverse pharmacology” approach for developing an anti-malarial phytomedicine
A “reverse pharmacology” approach to developing an anti-malarial phytomedicine was designed and implemented in Mali, resulting in a new standardized herbal anti-malarial after six years of research. The first step was to select a remedy for development, through a retrospective treatment-outcome study. The second step was a dose-escalating clinical trial that showed a dose-response phenomenon and helped select the safest and most efficacious dose. The third step was a randomized controlled trial to compare the phytomedicine to the standard first-line treatment. The last step was to identify active compounds which can be used as markers for standardization and quality control. This example of “reverse pharmacology” shows that a standardized phytomedicine can be developed faster and more cheaply than conventional drugs. Even if both approaches are not fully comparable, their efficiency in terms of public health and their complementarity should be thoroughly considered
Quantitative expression of osteopontin in nasal mucosa of patients with allergic rhinitis: effects of pollen exposure and nasal glucocorticoid treatment
<p>Abstract</p> <p>Background</p> <p>Osteopontin (OPN) is a multifunctional cytokine that has been primarily investigated in Th1 diseases. Recently, it has also been implicated in Th2-mediated allergic diseases, such as asthma. The expression of OPN in allergic rhinitis (AR) is currently unknown, as is the effect of intranasal glucocorticosteroids (GCs) on that expression.</p> <p>Methods</p> <p>Subjects with AR were randomised to receive treatment with fluticasone propionate (FP) (n = 12) or a placebo (n = 16) over the grass pollen season and nasal biopsies were taken prior to, and during the season. OPN expression in the nasal mucosa was examined with immunohistochemistry. Healthy non-AR controls (n = 5) were used as a comparator.</p> <p>Results</p> <p>OPN expression was detected in epithelial cells, subepithelial infiltrating/inflammatory cells and cells lining the vessels and glands of all subjects. Comparison of the pre- and peak-pollen season biopsy sections in placebo treated patients revealed no increase in OPN expression during the grass pollen season (5.7% vs 6.4%). Treatment with a local glucocorticosteroid did not alter the expression of OPN during pollen exposure (6.2% vs 6.7%).</p> <p>Conclusion</p> <p>OPN has been increasingly associated with the pathogenesis of various Th2-mediated diseases. However, our finding that the OPN expression in the nasal mucosa of AR patients is not significantly affected by allergen exposure and is comparable to that of the healthy controls, suggests that intracellular OPN is not directly involved in the pathogenesis of allergic rhinitis.</p
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize
<p>Abstract</p> <p>Background</p> <p>Under normal solar fluence, UV-B damages macromolecules, but it also elicits physiological acclimation and developmental changes in plants. Excess UV-B decreases crop yield. Using a treatment twice solar fluence, we focus on discovering signals produced in UV-B-irradiated maize leaves that translate to systemic changes in shielded leaves and immature ears.</p> <p>Results</p> <p>Using transcriptome and proteomic profiling, we tracked the kinetics of transcript and protein alterations in exposed and shielded organs over 6 h. In parallel, metabolic profiling identified candidate signaling molecules based on rapid increase in irradiated leaves and increased levels in shielded organs; pathways associated with the synthesis, sequestration, or degradation of some of these potential signal molecules were UV-B-responsive. Exposure of just the top leaf substantially alters the transcriptomes of both irradiated and shielded organs, with greater changes as additional leaves are irradiated. Some phenylpropanoid pathway genes are expressed only in irradiated leaves, reflected in accumulation of pathway sunscreen molecules. Most protein changes detected occur quickly: approximately 92% of the proteins in leaves and 73% in immature ears changed after 4 h UV-B were altered by a 1 h UV-B treatment.</p> <p>Conclusions</p> <p>There were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs. A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion. Immature maize ears are highly responsive to canopy leaf exposure to UV-B.</p
Brazilian adolescents' knowledge and beliefs about abortion methods: A school-based internet inquiry
Background: Internet surveys that draw from traditionally generated samples provide the unique conditions to engage adolescents in exploration of sensitive health topics.Methods: We examined awareness of unwanted pregnancy, abortion behaviour, methods, and attitudes toward specific legal indications for abortion via a school-based internet survey among 378 adolescents aged 12-21 years in three Rio de Janeiro public schools.Results: Forty-five percent knew peers who had undergone an abortion. Most students (66.0%) did not disclose abortion method knowledge. However, girls (aOR 4.2, 95% CI 2.4-7.2), those who had experienced their sexual debut (aOR1.76, 95% CI 1.1-3.0), and those attending a prestigious magnet school (aOR 2.7 95% CI 1.4-6.3) were more likely to report methods. Most abortion methods (79.3%) reported were ineffective, obsolete, and/or unsafe. Herbs (e.g. marijuana tea), over-the-counter medications, surgical procedures, foreign objects and blunt trauma were reported. Most techniques (85.2%) were perceived to be dangerous, including methods recommended by the World Health Organization. A majority (61.4%) supported Brazil's existing law permitting abortion in the case of rape. There was no association between gender, age, sexual debut, parental education or socioeconomic status and attitudes toward legal abortion. However, students at the magnet school supported twice as many legal indications (2.7, SE.27) suggesting a likely role of peers and/or educators in shaping abortion views.Conclusions: Abortion knowledge and attitudes are not driven simply by age, religion or class, but rather a complex interplay that includes both social spaces and gender. Prevention of abortion morbidity and mortality among adolescents requires comprehensive sexuality and reproductive health education that includes factual distinctions between safe and unsafe abortion methods
Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development
Background: Lysine-specific histone demethylase 5C (KDM5C) belongs to the jumonji family of demethylases and is specific for the di- and tri-demethylation of lysine 4 residues on histone 3 (H3K4 me2/3). KDM5C is expressed in the brain and skeletal muscles of humans and is associated with various biologically significant processes. KDM5C is known to be associated with X-linked mental retardation and is also involved in the development of cancer. However, the developmental significance of KDM5C has not been explored yet. In the present study, we investigated the physiological roles of KDM5C during Xenopus laevis embryonic development.
Results: Loss-of-function analysis using kdm5c antisense morpholino oligonucleotides indicated that kdm5c knockdown led to small-sized heads, reduced cartilage size, and malformed eyes (i.e., small-sized and deformed eyes). Molecular analyses of KDM5C functional roles using whole-mount in situ hybridization, -galactosidase staining, and reverse transcription-polymerase chain reaction revealed that loss of kdm5c resulted in reduced expression levels of neural crest specifiers and genes involved in eye development. Furthermore, transcriptome analysis indicated the significance of KDM5C in morphogenesis and organogenesis.
Conclusion: Our findings indicated that KDM5C is associated with embryonic development and provided additional information regarding the complex and dynamic gene network that regulates neural crest formation and eye development. This study emphasizes the functional significance of KDM5C in Xenopus embryogenesis; however, further analysis is needed to explore the interactions of KDM5C with specific developmental genes
Endocytosis of DNA-Hsp65 Alters the pH of the Late Endosome/Lysosome and Interferes with Antigen Presentation
BACKGROUND: Experimental models using DNA vaccine has shown that this vaccine is efficient in generating humoral and cellular immune responses to a wide variety of DNA-derived antigens. Despite the progress in DNA vaccine development, the intracellular transport and fate of naked plasmid DNA in eukaryotic cells is poorly understood, and need to be clarified in order to facilitate the development of novel vectors and vaccine strategies. METHODOLOGY AND PRINCIPAL FINDINGS: Using confocal microscopy, we have demonstrated for the first time that after plasmid DNA uptake an inhibition of the acidification of the lysosomal compartment occurs. This lack of acidification impaired antigen presentation to CD4 T cells, but did not alter the recruitment of MyD88. The recruitment of Rab 5 and Lamp I were also altered since we were not able to co-localize plasmid DNA with Rab 5 and Lamp I in early endosomes and late endosomes/lysosomes, respectively. Furthermore, we observed that the DNA capture process in macrophages was by clathrin-mediated endocytosis. In addition, we observed that plasmid DNA remains in vesicles until it is in a juxtanuclear location, suggesting that the plasmid does not escape into the cytoplasmic compartment. CONCLUSIONS AND SIGNIFICANCE: Taken together our data suggests a novel mechanism involved in the intracellular trafficking of plasmid DNA, and opens new possibilities for the use of lower doses of plasmid DNA to regulate the immune response
Gap junctions in olfactory neurons modulate olfactory sensitivity
<p>Abstract</p> <p>Background</p> <p>One of the fundamental questions in olfaction is whether olfactory receptor neurons (ORNs) behave as independent entities within the olfactory epithelium. On the basis that mature ORNs express multiple connexins, I postulated that gap junctional communication modulates olfactory responses in the periphery and that disruption of gap junctions in ORNs reduces olfactory sensitivity. The data collected from characterizing connexin 43 (Cx43) dominant negative transgenic mice OlfDNCX, and from calcium imaging of wild type mice (WT) support my hypothesis.</p> <p>Results</p> <p>I generated OlfDNCX mice that express a dominant negative Cx43 protein, Cx43/β-gal, in mature ORNs to inactivate gap junctions and hemichannels composed of Cx43 or other structurally related connexins. Characterization of OlfDNCX revealed that Cx43/β-gal was exclusively expressed in areas where mature ORNs resided. Real time quantitative PCR indicated that cellular machineries of OlfDNCX were normal in comparison to WT. Electroolfactogram recordings showed decreased olfactory responses to octaldehyde, heptaldehyde and acetyl acetate in OlfDNCX compared to WT. Octaldehyde-elicited glomerular activity in the olfactory bulb, measured according to odor-elicited <it>c-fos </it>mRNA upregulation in juxtaglomerular cells, was confined to smaller areas of the glomerular layer in OlfDNCX compared to WT. In WT mice, octaldehyde sensitive neurons exhibited reduced response magnitudes after application of gap junction uncoupling reagents and the effects were specific to subsets of neurons.</p> <p>Conclusions</p> <p>My study has demonstrated that altered assembly of Cx43 or structurally related connexins in ORNs modulates olfactory responses and changes olfactory activation maps in the olfactory bulb. Furthermore, pharmacologically uncoupling of gap junctions reduces olfactory activity in subsets of ORNs. These data suggest that gap junctional communication or hemichannel activity plays a critical role in maintaining olfactory sensitivity and odor perception.</p
Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson’s disease. LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson’s disease, but whether LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase αTAT1 prevents association of mutant LRRK2 with microtubules, and the deacetylase inhibitor trichostatin A (TSA) restores axonal transport. In vivo knockdown of the deacetylases HDAC6 and Sirt2, or administration of TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson’s disease
- …