512 research outputs found
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
Photoperiod Regulates Lean Mass Accretion, but Not Adiposity, in Growing F344 Rats Fed a High Fat Diet
yesIn this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHβ or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function.Scottish Government (Rural and Environment Science and Analytical Services Division, http://www.scotland.gov.uk/), AWR LR LMT PJM and the BBSRC, (http://www.bbsrc.ac.uk/home/home.aspx, grant BB/K001043/1), AWR GH PJ
The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature
Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets
Principles of genetic circuit design
Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552
Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism
Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts
The effects of a high protein diet on indices of health and body composition – a crossover trial in resistance-trained men
PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae
<p>Abstract</p> <p>Background</p> <p>Protein phosphorylation modulates protein function in organisms at all levels of complexity. Parasites of the <it>Leishmania </it>genus undergo various developmental transitions in their life cycle triggered by changes in the environment. The molecular mechanisms that these organisms use to process and integrate these external cues are largely unknown. However <it>Leishmania </it>lacks transcription factors, therefore most regulatory processes may occur at a post-translational level and phosphorylation has recently been demonstrated to be an important player in this process. Experimental identification of phosphorylation sites is a time-consuming task. Moreover some sites could be missed due to the highly dynamic nature of this process or to difficulties in phospho-peptide enrichment.</p> <p>Results</p> <p>Here we present PhosTryp, a phosphorylation site predictor specific for trypansomatids. This method uses an SVM-based approach and has been trained with recent <it>Leishmania </it>phosphosproteomics data. PhosTryp achieved a 17% improvement in prediction performance compared with Netphos, a non organism-specific predictor. The analysis of the peptides correctly predicted by our method but missed by Netphos demonstrates that PhosTryp captures <it>Leishmania</it>-specific phosphorylation features. More specifically our results show that <it>Leishmania </it>kinases have sequence specificities which are different from their counterparts in higher eukaryotes. Consequently we were able to propose two possible <it>Leishmania</it>-specific phosphorylation motifs.</p> <p>We further demonstrate that this improvement in performance extends to the related trypanosomatids <it>Trypanosoma brucei </it>and <it>Trypanosoma cruzi</it>. Finally, in order to maximize the usefulness of PhosTryp, we trained a predictor combining all the peptides from <it>L. infantum, T. brucei and T. cruzi</it>.</p> <p>Conclusions</p> <p>Our work demonstrates that training on organism-specific data results in an improvement that extends to related species. PhosTryp is freely available at <url>http://phostryp.bio.uniroma2.it</url></p
Phase-specific and lifetime costs of cancer care in Ontario, Canada
BACKGROUND: Cancer is a major public health issue and represents a significant economic burden to health care systems worldwide. The objective of this analysis was to estimate phase-specific, 5-year and lifetime net costs for the 21 most prevalent cancer sites, and remaining tumour sites combined, in Ontario, Canada. METHODS: We selected all adult patients diagnosed with a primary cancer between 1997 and 2007, with valid ICD-O site and histology codes, and who survived 30 days or more after diagnosis, from the Ontario Cancer Registry (N = 394,092). Patients were linked to treatment data from Cancer Care Ontario and administrative health care databases at the Institute for Clinical and Evaluative Sciences. Net costs (i.e., cost difference between patients and matched non-cancer control subjects) were estimated by phase of care and sex, and used to estimate 5-year and lifetime costs. RESULTS: Mean net costs of care (2009 CAD) were highest in the initial (6 months post-diagnosis) and terminal (12 months pre-death) phases, and lowest in the (3 months) pre-diagnosis and continuing phases of care. Phase-specific net costs were generally lowest for melanoma and highest for brain cancer. Mean 5-year net costs varied from less than 60,000 for multiple myeloma and leukemia. Lifetime costs ranged from less than 110,000 for leukemia, multiple myeloma, lymphoma and breast cancer. CONCLUSIONS: Costs of cancer care are substantial and vary by cancer site, phase of care and time horizon analyzed. These cost estimates are valuable to decision makers to understand the economic burden of cancer care and may be useful inputs to researchers undertaking cancer-related economic evaluations
Overview of the VA Quality Enhancement Research Initiative (QUERI) and QUERI theme articles: QUERI Series
<p>Abstract</p> <p>Background</p> <p>Continuing challenges to timely adoption of evidence-based clinical practices in healthcare have generated intense interest in the development and application of new implementation methods and frameworks. These challenges led the United States (U.S.) Department of Veterans Affairs (VA) to create the Quality Enhancement Research Initiative (QUERI) in the late 1990s. QUERI's purpose was to harness VA's health services research expertise and resources in an ongoing system-wide effort to improve the performance of the VA healthcare system and, thus, quality of care for veterans. QUERI in turn created a systematic means of involving VA researchers both in enhancing VA healthcare quality, by implementing evidence-based practices, and in contributing to the continuing development of implementation science.</p> <p>The efforts of VA researchers to improve healthcare delivery practices through QUERI and related initiatives are documented in a growing body of literature. The scientific frameworks and methodological approaches developed and employed by QUERI are less well described. A QUERI Series of articles in <it>Implementation Science </it>will illustrate many of these QUERI tools. This <it>Overview </it>article introduces both QUERI and the Series.</p> <p>Methods</p> <p>The <it>Overview </it>briefly explains the purpose and context of the QUERI Program. It then describes the following: the key operational structure of QUERI Centers, guiding frameworks designed to enhance implementation and related research, QUERI's progress and promise to date, and the Series' general content. QUERI's frameworks include a core set of steps for diagnosing and closing quality gaps and, simultaneously, advancing implementation science. Throughout the paper, the envisioned involvement and activities of VA researchers within QUERI Centers also are highlighted. The Series is then described, illustrating the use of QUERI frameworks and other tools designed to respond to implementation challenges.</p> <p>Conclusion</p> <p>QUERI's simultaneous pursuit of improvement and research goals within a large healthcare system may be unique. However, descriptions of this still-evolving effort, including its conceptual frameworks, methodological approaches, and enabling processes, should have applicability to implementation researchers in a range of health care settings. Thus, the <it>Series </it>is offered as a resource for other implementation research programs and researchers pursuing common goals in improving care and developing the field of implementation science.</p
Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill
Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders) were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy
- …
