100 research outputs found

    Optical Lattices: Theory

    Full text link
    This chapter presents an overview of the properties of a Bose-Einstein condensate (BEC) trapped in a periodic potential. This system has attracted a wide interest in the last years, and a few excellent reviews of the field have already appeared in the literature (see, for instance, [1-3] and references therein). For this reason, and because of the huge amount of published results, we do not pretend here to be comprehensive, but we will be content to provide a flavor of the richness of this subject, together with some useful references. On the other hand, there are good reasons for our effort. Probably, the most significant is that BEC in periodic potentials is a truly interdisciplinary problem, with obvious connections with electrons in crystal lattices, polarons and photons in optical fibers. Moreover, the BEC experimentalists have reached such a high level of accuracy to create in the lab, so to speak, paradigmatic Hamiltonians, which were first introduced as idealized theoretical models to study, among others, dynamical instabilities or quantum phase transitions.Comment: Chapter 13 in Part VIII: "Optical Lattices" of "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer Series on Atomic, Optical, and Plasma Physics, 2007) - pages 247-26

    The Effect of Bacterial Infection on the Biomechanical Properties of Biological Mesh in a Rat Model

    Get PDF
    BACKGROUND: The use of biologic mesh to repair abdominal wall defects in contaminated surgical fields is becoming the standard of practice. However, failure rates and infections of these materials persist clinically. The purpose of this study was to determine the mechanical properties of biologic mesh in response to a bacterial encounter. METHODS: A rat model of Staphylococcus aureus colonization and infection of subcutaneously implanted biologic mesh was used. Samples of biologic meshes (acellular human dermis (ADM) and porcine small intestine submucosa (SIS)) were inoculated with various concentrations of methicillin-resistant Staphylococcus aureus [10(5), 10(9) colony-forming units] or saline (control) prior to wound closure (n = 6 per group). After 10 or 20 days, meshes were explanted, and cultured for bacteria. Histological changes and bacterial recovery together with biomechanical properties were assessed. Data were compared using a 1-way ANOVA or a Mann-Whitney test, with p<0.05. RESULTS: The overall rate of staphylococcal mesh colonization was 81% and was comparable in the ADM and SIS groups. Initially (day 0) both biologic meshes had similar biomechanical properties. However after implantation, the SIS control material was significantly weaker than ADM at 20 days (p = 0.03), but their corresponding modulus of elasticity were similar at this time point (p>0.05). After inoculation with MRSA, a time, dose and material dependent decrease in the ultimate tensile strength and modulus of elasticity of SIS and ADM were noted compared to control values. CONCLUSION: The biomechanical properties of biologic mesh significantly decline after colonization with MRSA. Surgeons selecting a repair material should be aware of its biomechanical fate relative to other biologic materials when placed in a contaminated environment

    Search for Nucleon Decay with Final States l+ eta, nubar eta, and nubar pi+,0 Using Soudan 2

    Full text link
    We have searched for nucleon decay into five two-body final states using a 4.4 kiloton-year fiducial exposure of the Soudan 2 iron tracking calorimeter. For proton decay into the fully visible final states mu+ eta and e+ eta, we observe zero and one event, respectively, that satisfy our search criteria for nucleon decay. The lifetime lower limits (tau/B) thus implied are 89 x 10^30 years and 81 x 10^30 years at 90% confidence level. For neutron decay into nubar eta, we obtain the lifetime lower limit 71 x 10^30 years. Limits are also reported for neutron decay into nubar pi0, and for proton decay into nubar pi+.Comment: 24 pages, 9 figures, 3 table

    Decoherence, Entanglement and Irreversibility in Quantum Dynamical Systems with Few Degrees of Freedom

    Full text link
    This review summarizes and amplifies on recent investigations of coupled quantum dynamical systems in the short wavelength limit. We formulate and attempt to answer three fundamental questions: (i) What drives a dynamical quantum system to behave classically ? (ii) What determines the rate at which two coupled quantum--mechanical systems become entangled ? (iii) How does irreversibility occur in quantum systems with few degrees of freedom ? We embed these three questions in the broader context of the quantum--classical correspondence, which motivates the use of short--wavelength approximations to quantum mechanics such as the trajectory-based semiclassical methods and random matrix theory. Doing so, we propose a novel investigative procedure towards decoherence and the emergence of classicality out of quantumness in dynamical systems coupled to external degrees of freedom. We reproduce known results derived using master equation or Lindblad approaches but also generate novel ones. In particular we show how local exponential instability also affects the temporal evolution of quantum chaotic dynamical systems. We extensively rely on numerical experiments to illustrate our findings and briefly comment on possible extensions to more complex problems involving environments with n≫1n \gg 1 interacting dynamical systems, going beyond the uncoupled harmonic oscillator model of Caldeira and Leggett.Comment: Final version, to appear in Advances in Physic

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    TESS hunt for young and maturing exoplanets (THYME). VI. an 11 Myr giant planet transiting a very-low-mass star in lower centaurus crux

    Get PDF
    Mature super-Earths and sub-Neptunes are predicted to be ≃ Jovian radius when younger than 10 Myr. Thus, we expect to find 5–15 R⊕ planets around young stars even if their older counterparts harbor none. We report the discovery and validation of TOI 1227b, a 0.85 ± 0.05 RJ (9.5 R⊕) planet transiting a very-low-mass star (0.170 ± 0.015 M⊙) every 27.4 days. TOI 1227's kinematics and strong lithium absorption confirm that it is a member of a previously discovered subgroup in the Lower Centaurus Crux OB association, which we designate the Musca group. We derive an age of 11 ± 2 Myr for Musca, based on lithium, rotation, and the color–magnitude diagram of Musca members. The TESS data and ground-based follow-up show a deep (2.5%) transit. We use multiwavelength transit observations and radial velocities from the IGRINS spectrograph to validate the signal as planetary in nature, and we obtain an upper limit on the planet mass of ≃0.5 MJ. Because such large planets are exceptionally rare around mature low-mass stars, we suggest that TOI 1227b is still contracting and will eventually turn into one of the more common <5 R⊕ planets

    TILLING - a shortcut in functional genomics

    Get PDF
    Recent advances in large-scale genome sequencing projects have opened up new possibilities for the application of conventional mutation techniques in not only forward but also reverse genetics strategies. TILLING (Targeting Induced Local Lesions IN Genomes) was developed a decade ago as an alternative to insertional mutagenesis. It takes advantage of classical mutagenesis, sequence availability and high-throughput screening for nucleotide polymorphisms in a targeted sequence. The main advantage of TILLING as a reverse genetics strategy is that it can be applied to any species, regardless of its genome size and ploidy level. The TILLING protocol provides a high frequency of point mutations distributed randomly in the genome. The great mutagenic potential of chemical agents to generate a high rate of nucleotide substitutions has been proven by the high density of mutations reported for TILLING populations in various plant species. For most of them, the analysis of several genes revealed 1 mutation/200–500 kb screened and much higher densities were observed for polyploid species, such as wheat. High-throughput TILLING permits the rapid and low-cost discovery of new alleles that are induced in plants. Several research centres have established a TILLING public service for various plant species. The recent trends in TILLING procedures rely on the diversification of bioinformatic tools, new methods of mutation detection, including mismatch-specific and sensitive endonucleases, but also various alternatives for LI-COR screening and single nucleotide polymorphism (SNP) discovery using next-generation sequencing technologies. The TILLING strategy has found numerous applications in functional genomics. Additionally, wide applications of this throughput method in basic and applied research have already been implemented through modifications of the original TILLING strategy, such as Ecotilling or Deletion TILLING

    Blood Glucose Levels Regulate Pancreatic β-Cell Proliferation during Experimentally-Induced and Spontaneous Autoimmune Diabetes in Mice

    Get PDF
    Type 1 diabetes mellitus is caused by immune-mediated destruction of pancreatic beta-cells leading to insulin deficiency, impaired intermediary metabolism, and elevated blood glucose concentrations. While at autoimmune diabetes onset a limited number of beta-cells persist, the cells' regenerative potential and its regulation have remained largely unexplored. Using two mouse autoimmune diabetes models, this study examined the proliferation of pancreatic islet ss-cells and other endocrine and non-endocrine subsets, and the factors regulating that proliferation.We adapted multi-parameter flow cytometry techniques (including DNA-content measurements and 5'-bromo-2'-deoxyuridine [BrdU] incorporation) to study pancreatic islet single cell suspensions. These studies demonstrate that beta-cell proliferation rapidly increases at diabetes onset, and that this proliferation is closely correlated with the diabetic animals' elevated blood glucose levels. For instance, we show that when normoglycemia is restored by exogenous insulin or islet transplantation, the beta-cell proliferation rate returns towards low levels found in control animals, yet surges when hyperglycemia recurs. In contrast, other-than-ss endocrine islet cells did not exhibit the same glucose-dependent proliferative responses. Rather, disease-associated alterations of BrdU-incorporation rates of delta-cells (minor decrease), and non-endocrine islet cells (slight increase) were not affected by blood glucose levels, or were inversely related to glycemia control after diabetes onset (alpha-cells).We conclude that murine beta-cells' ability to proliferate in response to metabolic need (i.e. rising blood glucose concentrations) is remarkably well preserved during severe, chronic beta-cell autoimmunity. These data suggest that timely control of the destructive immune response after disease manifestation could allow spontaneous regeneration of sufficient beta-cell mass to restore normal glucose homeostasis

    Charge-separated atmospheric neutrino-induced muons in the MINOS far detector

    Get PDF
    14 pages, 15 figuresWe found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios is consistent with an oscillation signal. A fit to the data for the oscillation parameters excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons by charge sign in both the data and Monte Carlo events and found the ratio of the total number of negative to positive muons in both samples. The ratio of those ratios is a test of CPT conservation. The result is consistent with CPT conservation
    • …
    corecore