97 research outputs found

    Regional myocardial function after intracoronary bone marrow cell injection in reperfused anterior wall infarction - a cardiovascular magnetic resonance tagging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trials have brought diverse results of bone marrow stem cell treatment in necrotic myocardium. This substudy from the Autologous Stem Cell Transplantation in Acute Myocardial Infarction trial (ASTAMI) explored global and regional myocardial function after intracoronary injection of autologous mononuclear bone marrow cells (mBMC) in acute anterior wall myocardial infarction treated with percutaneous coronary intervention.</p> <p>Methods</p> <p>Cardiovascular magnetic resonance (CMR) tagging was performed 2-3 weeks and 6 months after revascularization in 15 patients treated with intracoronary stem cell injection (mBMC group) and in 13 controls without sham injection. Global and regional left ventricular (LV) strain and LV twist were correlated to cine CMR and late gadolinium enhancement (LGE).</p> <p>Results</p> <p>In the control group myocardial function as measured by strain improved for the global LV (6 months: -13.1 Β± 2.4 versus 2-3 weeks: -11.9 Β± 3.4%, p = 0.014) and for the infarct zone (-11.8 Β± 3.0 versus -9.3 Β± 4.1%, p = 0.001), and significantly more than in the mBMC group (inter-group p = 0.027 for global strain, respectively p = 0.009 for infarct zone strain). LV infarct mass decreased (35.7 Β± 20.4 versus 45.7 Β± 29.5 g, p = 0.024), also significantly more pronounced than the mBMC group (inter-group p = 0.034). LV twist was initially low and remained unchanged irrespective of therapy.</p> <p>Conclusions</p> <p>LGE and strain findings quite similarly demonstrate subtle differences between the mBMC and control groups. Intracoronary injection of autologous mBMC did not strengthen regional or global myocardial function in this substudy.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00199823">NCT00199823</a></p

    Influence of Exposure History on the Immunology and Development of Resistance to Human Schistosomiasis Mansoni

    Get PDF
    Schistosomiasis is a parasitic blood fluke infection of 200 million people worldwide. We have shown that humans can acquire immunity to reinfection after repeated exposures and cures with the drug praziquantel. The increase in resistance to reinfection was associated with an increase in schistosome-specific IgE. The ability to develop resistance and the rate at which resistance was acquired varied greatly in two cohorts of men within close geographic proximity and with similar occupational exposures to schistosomes. These differences are likely attributable to differences in history of exposure to Schistosoma mansoni infection and immunologic status at baseline, with those acquiring immunity faster having lifelong S. mansoni exposure and immunologic evidence of chronic S. mansoni infection. As many conflicting results have been reported in the literature regarding immunologic parameters associated with the development of resistance to schistosome infection, exposure history and prior immune status should be considered in the design of future immuno-epidemiologic studies

    Modular protein-RNA interactions regulating mRNA metabolism: a role for NMR

    Get PDF
    Here we review the role played by transient interactions between multi-functional proteins and their RNA targets in the regulation of mRNA metabolism, and we describe the important function of NMR spectroscopy in the study of these systems. We place emphasis on a general approach for the study of different features of modular multi-domain recognition that uses well-established NMR techniques and that has provided important advances in the general understanding of post-transcriptional regulation

    Intravenous and intramyocardial injection of apoptotic white blood cell suspensions prevents ventricular remodelling by increasing elastin expression in cardiac scar tissue after myocardial infarction

    Get PDF
    Congestive heart failure developing after acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Clinical trials of cell-based therapy after AMI evidenced only a moderate benefit. We could show previously that suspensions of apoptotic peripheral blood mononuclear cells (PBMC) are able to reduce myocardial damage in a rat model of AMI. Here we experimentally examined the biochemical mechanisms involved in preventing ventricular remodelling and preserving cardiac function after AMI. Cell suspensions of apoptotic cells were injected intravenously or intramyocardially after experimental AMI induced by coronary artery ligation in rats. Administration of cell culture medium or viable PBMC served as controls. Immunohistological analysis was performed to analyse the cellular infiltrate in the ischaemic myocardium. Cardiac function was quantified by echocardiography. Planimetry of the infarcted hearts showed a significant reduction of infarction size and an improvement of post AMI remodelling in rats treated with suspensions of apoptotic PBMC (injected either intravenously or intramoycardially). Moreover, these hearts evidenced enhanced homing of macrophages and cells staining positive for c-kit, FLK-1, IGF-I and FGF-2 as compared to controls. A major finding in this study further was that the ratio of elastic and collagenous fibres within the scar tissue was altered in a favourable fashion in rats injected with apoptotic cells. Intravenous or intramyocardial injection of apoptotic cell suspensions results in attenuation of myocardial remodelling after experimental AMI, preserves left ventricular function, increases homing of regenerative cells and alters the composition of cardiac scar tissue. The higher expression of elastic fibres provides passive energy to the cardiac scar tissue and results in prevention of ventricular remodelling

    Long-Term Effects of Autologous Bone Marrow Stem Cell Treatment in Acute Myocardial Infarction: Factors That May Influence Outcomes

    Get PDF
    AIMS: To investigate whether there are important sources of heterogeneity between the findings of different clinical trials which administer autologous stem cell treatment for acute myocardial infarction (AMI) and to evaluate what factors may influence the long-term effects of this treatment. METHODS AND RESULTS: MEDLINE (1950-January 2011), EMBASE (1974-January 2011), CENTRAL (The Cochrane Library 2011, Issue 1), CINAHL (1982-January 2011), and ongoing trials registers were searched for randomised trials of bone marrow stem cells as treatment for AMI. Hand-searching was used to screen recent, relevant conference proceedings (2005-2010/11). Meta-analyses were conducted using random-effects models and heterogeneity between subgroups was assessed using chi-squared tests. Planned analyses included length of follow-up, timing of cell infusion and dose, patient selection, small trial size effect, methodological quality, loss of follow-up and date of publication. Thirty-three trials with a total of 1,765 participants were included. There was no evidence of bias due to publication or time-lag, methodological quality of included studies, participant drop-out, duration of follow-up or date of the first disclosure of results. However, in long-term follow-ups the treatment seemed more effective when administered at doses greater than 10(8) cells and to patients with more severe heart dysfunction. CONCLUSIONS: Evaluation of heterogeneity between trials has not identified significant sources of bias in this study. However, clinical differences between trials are likely to exist which should be considered when undertaking future trials

    Competitive and Cooperative Interactions Mediate RNA Transfer from Herpesvirus Saimiri ORF57 to the Mammalian Export Adaptor ALYREF

    Get PDF
    The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an a-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the a-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions

    Effects of early feeding on growth velocity and overweight/obesity in a cohort of HIV unexposed South African infants and children

    Get PDF
    BACKGROUND: South Africa has the highest prevalence of overweight/obesity in Sub-Saharan Africa. Assessing the effect of modifiable factors such as early infant feeding on growth velocity and overweight/obesity is therefore important. This paper aimed to assess the effect of infant feeding in the transitional period (12 weeks) on 12–24 week growth velocity amongst HIV unexposed children using WHO growth velocity standards and on the age and sex adjusted body mass index (BMI) Z-score distribution at 2 years. METHODS: Data were from 3 sites in South Africa participating in the PROMISE-EBF trial. We calculated growth velocity Z-scores using the WHO growth standards and assessed feeding practices using 24-hour and 7-day recall data. We used quantile regression to study the associations between 12 week infant feeding and 12–24 week weight velocity (WVZ) with BMI-for-age Z-score at 2 years. We included the internal sample quantiles (70th and 90th centiles) that approximated the reference cut-offs of +2 (corresponding to overweight) and +3 (corresponding to obesity) of the 2 year BMI-for-age Z-scores. RESULTS: At the 2-year visit, 641 children were analysed (median age 22 months, IQR: 17–26 months). Thirty percent were overweight while 8.7% were obese. Children not breastfed at 12 weeks had higher 12–24 week mean WVZ and were more overweight and obese at 2 years. In the quantile regression, children not breastfed at 12 weeks had a 0.37 (95% CI 0.07, 0.66) increment in BMI-for-age Z-score at the 50th sample quantile compared to breast-fed children. This difference in BMI-for-age Z-score increased to 0.46 (95% CI 0.18, 0.74) at the 70th quantile and 0.68 (95% CI 0.41, 0.94) at the 90th quantile . The 12–24 week WVZ had a uniform independent effect across the same quantiles. CONCLUSIONS: This study demonstrates that the first 6 months of life is a critical period in the development of childhood overweight and obesity. Interventions targeted at modifiable factors such as early infant feeding practices may reduce the risks of rapid weight gain and subsequent childhood overweight/obesity.Scopu

    Syndecan-4 Is Essential for Development of Concentric Myocardial Hypertrophy via Stretch-Induced Activation of the Calcineurin-NFAT Pathway

    Get PDF
    Sustained pressure overload leads to compensatory myocardial hypertrophy and subsequent heart failure, a leading cause of morbidity and mortality. Further unraveling of the cellular processes involved is essential for development of new treatment strategies. We have investigated the hypothesis that the transmembrane Z-disc proteoglycan syndecan-4, a co-receptor for integrins, connecting extracellular matrix proteins to the cytoskeleton, is an important signal transducer in cardiomyocytes during development of concentric myocardial hypertrophy following pressure overload. Echocardiographic, histochemical and cardiomyocyte size measurements showed that syndecan-4βˆ’/βˆ’ mice did not develop concentric myocardial hypertrophy as found in wild-type mice, but rather left ventricular dilatation and dysfunction following pressure overload. Protein and gene expression analyses revealed diminished activation of the central, pro-hypertrophic calcineurin-nuclear factor of activated T-cell (NFAT) signaling pathway. Cardiomyocytes from syndecan-4βˆ’/βˆ’-NFAT-luciferase reporter mice subjected to cyclic mechanical stretch, a hypertrophic stimulus, showed minimal activation of NFAT (1.6-fold) compared to 5.8-fold increase in NFAT-luciferase control cardiomyocytes. Accordingly, overexpression of syndecan-4 or introducing a cell-permeable membrane-targeted syndecan-4 polypeptide (gain of function) activated NFATc4 in vitro. Pull-down experiments demonstrated a direct intracellular syndecan-4-calcineurin interaction. This interaction and activation of NFAT were increased by dephosphorylation of serine 179 (pS179) in syndecan-4. During pressure overload, phosphorylation of syndecan-4 was decreased, and association between syndecan-4, calcineurin and its co-activator calmodulin increased. Moreover, calcineurin dephosphorylated pS179, indicating that calcineurin regulates its own binding and activation. Finally, patients with hypertrophic myocardium due to aortic stenosis had increased syndecan-4 levels with decreased pS179 which was associated with increased NFAT activation. In conclusion, our data show that syndecan-4 is essential for compensatory hypertrophy in the pressure overloaded heart. Specifically, syndecan-4 regulates stretch-induced activation of the calcineurin-NFAT pathway in cardiomyocytes. Thus, our data suggest that manipulation of syndecan-4 may provide an option for therapeutic modulation of calcineurin-NFAT signaling

    A Combined Synthetic-Fibrin Scaffold Supports Growth and Cardiomyogenic Commitment of Human Placental Derived Stem Cells

    Get PDF
    Aims: A potential therapy for myocardial infarction is to deliver isolated stem cells to the infarcted site. A key issue with this therapy is to have at one\u27s disposal a suitable cell delivery system which, besides being able to support cell proliferation and differentiation, may also provide handling and elastic properties which do not affect cardiac contractile function. In this study an elastic scaffold, obtained combining a poly(ether)urethane-polydimethylsiloxane (PEtU-PDMS) semi-interpenetrating polymeric network (s-IPN) with fibrin, was used as a substrate for in vitro studies of human amniotic mesenchymal stromal cells (hAMSC) growth and differentiation. Methodology/Principal Findings: After hAMSC seeding on the fibrin side of the scaffold, cell metabolic activity and proliferation were evaluated by WST-1 and bromodeoxyuridine assays. Morphological changes and mRNAs expression for cardiac differentiation markers in the hAMSCs were examined using immunofluorescence and RT-PCR analysis. The beginning of cardiomyogenic commitment of hAMSCs grown on the scaffold was induced, for the first time in this cell population, by a nitric oxide (NO) treatment. Following NO treatment hAMSCs show morphological changes, an increase of the messenger cardiac differentiation markers [troponin I (TnI) and NK2 transcription factor related locus 5 (Nkx2.5)] and a modulation of the endothelial markers [vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR)]. Conclusions/Significance: The results of this study suggest that the s-IPN PEtU-PDMS/fibrin combined scaffold allows a better proliferation and metabolic activity of hAMSCs cultured up to 14 days, compared to the ones grown on plastic dishes. In addition, the combined scaffold sustains the beginning of hAMSCs differentiation process towards a cardiomyogenic lineage
    • …
    corecore