177 research outputs found
Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise
We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention
Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions
We report on a search for metastable positively and negatively charged states
of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864.
We have sampled approximately six billion 10% most central Au+Pb interactions
and have observed no strangelet states (baryon number A < 100 droplets of
strange quark matter). We thus set upper limits on the production of these
exotic states at the level of 1-6 x 10^{-8} per central collision. These limits
are the best and most model independent for this colliding system. We discuss
the implications of our results on strangelet production mechanisms, and also
on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover
memorial edition
ACEMBL Tool-Kits for High-Throughput Multigene Delivery and Expression in Prokaryotic and Eukaryotic Hosts
Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.
Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology
Respiratory syncytial virus infection induces higher Toll-like receptor-3 expression and TNF-α production than human metapneumovirus infection
published_or_final_versio
Is zero underestimation feasible? Extended Vacuum-assisted breast biopsy in solid lesions – a blind study
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Plasmacytoid Dendritic Cells Capture and Cross-Present Viral Antigens from Influenza-Virus Exposed Cells
Among the different subsets of dendritic cells (DC), plasmacytoid dendritic cells (PDC) play a unique role in secreting large amounts of type I interferons upon viral stimulation, but their efficiency as antigen-presenting cells has not been completely characterized. We show here, by flow cytometry, with human primary blood PDC and with a PDC cell line, that PDC display poor endocytic capacity for soluble or cellular antigens when compared to monocyte-derived myeloid DC. However, immature PDC efficiently take up cellular material from live influenza-exposed cells, subsequently mature and cross-present viral antigens very efficiently to specific CD8+ T cells. Therefore, during viral infection PDC not only secrete immunomodulatory cytokines, but also recognize infected cells and function as antigen cross-presenting cells to trigger the anti-viral immune response
Plasmacytoid Dendritic Cells Capture and Cross-Present Viral Antigens from Influenza-Virus Exposed Cells
Among the different subsets of dendritic cells (DC), plasmacytoid dendritic cells (PDC) play a unique role in secreting large amounts of type I interferons upon viral stimulation, but their efficiency as antigen-presenting cells has not been completely characterized. We show here, by flow cytometry, with human primary blood PDC and with a PDC cell line, that PDC display poor endocytic capacity for soluble or cellular antigens when compared to monocyte-derived myeloid DC. However, immature PDC efficiently take up cellular material from live influenza-exposed cells, subsequently mature and cross-present viral antigens very efficiently to specific CD8+ T cells. Therefore, during viral infection PDC not only secrete immunomodulatory cytokines, but also recognize infected cells and function as antigen cross-presenting cells to trigger the anti-viral immune response
Search for Strange Quark Matter Produced in Relativistic Heavy Ion Collisions
We present the final results from Experiment 864 of a search for charged and
neutral strange quark matter produced in interactions of 11.5 GeV/c per nucleon
Au beams with Pt or Pb targets. Searches were made for strange quark matter
with A>4. Approximately 30 billion 10% most central collisions were sampled and
no strangelet states with A<100 were observed. We find 90% confidence level
upper limits of approximately 10^{-8} per central collision for both charged
and neutral strangelets. These limits are for strangelets with proper lifetimes
greater than 50 ns. Also limits for H^{0}-d and pineut production are given.
The above limits are compared with the predictions of various models. The
yields of light nuclei from coalescence are measured and a penalty factor for
the addition of one nucleon to the coalescing nucleus is determined. This is
useful in gauging the significance of our upper limits and also in planning
future searches for strange quark matter.Comment: 35 pages, 18 figures, submitted to Phys. Rev.
Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis
<p>Abstract</p> <p>Background</p> <p>Infestation of ovine skin with the ectoparasitic mite <it>Psoroptes ovis </it>results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the <it>in vivo </it>skin response to infestation with <it>P. ovis </it>to gain a clearer understanding of the mechanisms and signalling pathways involved.</p> <p>Results</p> <p>Infestation with <it>P. </it>ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (<it>IL1A, IL1B, IL6, IL8 </it>and <it>TNF</it>) and factors involved in immune cell activation and recruitment (<it>SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 </it>and <it>CXCL2</it>). The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response.</p> <p>Conclusions</p> <p>This study has provided novel insights into the signalling mechanisms leading to the development of a pro-inflammatory response in sheep scab, whilst providing crucial information regarding the nature of mite factors that may trigger this response. It has enabled the elucidation of the temporal patterns by which the immune system is regulated following exposure to <it>P. ovis</it>, providing novel insights into the mechanisms underlying lesion development. This study has improved our existing knowledge of the host response to <it>P. ovis</it>, including the identification of key parallels between sheep scab and other inflammatory skin disorders and the identification of potential targets for disease control.</p
- …
