3,040 research outputs found
The UK's Global Health Respiratory Network: Improving respiratory health of the world's poorest through research collaborations.
Respiratory disorders are responsible for considerable morbidity, health care utilisation, societal costs and approximately one in five deaths worldwide [1-4]. Yet, despite this substantial health and societal burden – which particularly affects the world’s poorest populations and as such is a major contributor to global health inequalities – respiratory disorders have historically not received the
policy priority they warrant. For example, despite causing an estimated 1000 deaths per day, less than half of the world’s countries collect data on asthma prevalence (http://www.globalasthmareport.org/). This
is true for both communicable and non-communicable respiratory disorders, many of which are either amenable to treatment or preventable
Minimal flavour violation extensions of the seesaw
We analyze the most natural formulations of the minimal lepton flavour
violation hypothesis compatible with a type-I seesaw structure with three heavy
singlet neutrinos N, and satisfying the requirement of being predictive, in the
sense that all LFV effects can be expressed in terms of low energy observables.
We find a new interesting realization based on the flavour group (being and respectively the SU(2) singlet and
doublet leptons). An intriguing feature of this realization is that, in the
normal hierarchy scenario for neutrino masses, it allows for sizeable
enhancements of transitions with respect to LFV processes involving
the lepton. We also discuss how the symmetries of the type-I seesaw
allow for a strong suppression of the N mass scale with respect to the scale of
lepton number breaking, without implying a similar suppression for possible
mechanisms of N productionComment: 14 pages, 6 figure
New physics searches at near detectors of neutrino oscillation experiments
We systematically investigate the prospects of testing new physics with tau
sensitive near detectors at neutrino oscillation facilities. For neutrino beams
from pion decay, from the decay of radiative ions, as well as from the decays
of muons in a storage ring at a neutrino factory, we discuss which effective
operators can lead to new physics effects. Furthermore, we discuss the present
bounds on such operators set by other experimental data currently available.
For operators with two leptons and two quarks we present the first complete
analysis including all relevant operators simultaneously and performing a
Markov Chain Monte Carlo fit to the data. We find that these effects can induce
tau neutrino appearance probabilities as large as O(10^{-4}), which are within
reach of forthcoming experiments. We highlight to which kind of new physics a
tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX
Re-weighting of somatosensory inputs from the foot and the ankle for controlling posture during quiet standing following trunk extensor muscles fatigue
The present study focused on the effects of trunk extensor muscles fatigue on
postural control during quiet standing under different somatosensory conditions
from the foot and the ankle. With this aim, 20 young healthy adults were asked
to stand as immobile as possible in two conditions of No fatigue and Fatigue of
trunk extensor muscles. In Experiment 1 (n = 10), somatosensation from the foot
and the ankle was degraded by standing on a foam surface. In Experiment 2 (n =
10), somatosensation from the foot and ankle was facilitated through the
increased cutaneous feedback at the foot and ankle provided by strips of
athletic tape applied across both ankle joints. The centre of foot pressure
displacements (CoP) were recorded using a force platform. The results showed
that (1) trunk extensor muscles fatigue increased CoP displacements under
normal somatosensatory conditions (Experiment 1 and Experiment 2), (2) this
destabilizing effect was exacerbated when somatosensation from the foot and the
ankle was degraded (Experiment 1), and (3) this destabilizing effect was
mitigated when somatosensation from the foot and the ankle was facilitated
(Experiment 2). Altogether, the present findings evidenced re-weighting of
sensory cues for controlling posture during quiet standing following trunk
extensor muscles fatigue by increasing the reliance on the somatosensory inputs
from the foot and the ankle. This could have implications in clinical and
rehabilitative areas
Reading faces: differential lateral gaze bias in processing canine and human facial expressions in dogs and 4-year-old children
Sensitivity to the emotions of others provides clear biological advantages. However, in the case of heterospecific relationships, such as that existing between dogs and humans, there are additional challenges since some elements of the expression of emotions are species-specific. Given that faces provide important visual cues for communicating emotional state in both humans and dogs, and that processing of emotions is subject to brain lateralisation, we investigated lateral gaze bias in adult dogs when presented with pictures of expressive human and dog faces. Our analysis revealed clear differences in laterality of eye movements in dogs towards conspecific faces according to the emotional valence of the expressions. Differences were also found towards human faces, but to a lesser extent. For comparative purpose, a similar experiment was also run with 4-year-old children and it was observed that they showed differential processing of facial expressions compared to dogs, suggesting a species-dependent engagement of the right or left hemisphere in processing emotions
A realistic pattern of fermion masses from a five-dimensional SO(10) model
We provide a unified description of fermion masses and mixing angles in the
framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa
couplings of order unity. The space-time is five dimensional and the extra flat
spatial dimension is compactified on the orbifold ,
leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions
are localised. The gauge symmetry breaking is completed by means of a rather
economic scalar sector, avoiding the doublet-triplet splitting problem. The
matter fields live in the bulk and their massless modes get exponential
profiles, which naturally explain the mass hierarchy of the different fermion
generations. Quarks and leptons properties are naturally reproduced by a
mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of
bulk masses in terms of a single parameter. The model provides a realistic
pattern of fermion masses and mixing angles for large values of . It
favours normally ordered neutrino mass spectrum with the lightest neutrino mass
below 0.01 eV and no preference for leptonic CP violating phases. The right
handed neutrino mass spectrum is very hierarchical and does not allow for
thermal leptogenesis. We analyse several variants of the basic framework and
find that the results concerning the fermion spectrum are remarkably stable.Comment: 30 pages, 7 figures, 4 table
Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking
We propose the hybrid gravity-gauge mediated supersymmetry breaking where the
gravitino mass is about several GeV. The strong constraints on supersymmetry
viable parameter space from the CMS and ATLAS experiments at the LHC can be
relaxed due to the heavy colored supersymmetric particles, and it is consistent
with null results in the dark matter (DM) direct search experiments such as
XENON100. In particular, the possible maximal flavor and CP violations from the
relatively small gravity mediation may naturally account for the recent LHCb
anomaly. In addition, because the gravitino mass is around the asymmetric DM
mass, we propose the asymmetric origin of the gravitino relic density and solve
the cosmological coincident problem on the DM and baryon densities \Omega_{\rm
DM}:\Omega_{B}\approx 5:1. The gravitino relic density arises from asymmetric
metastable particle (AMP) late decay. However, we show that there is no AMP
candidate in the minimal supersymmetric Standard Model (SM) due to the robust
gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized
in the well motivated supersymmetric SMs with vector-like particles or
continuous U(1)_R symmetry. Especially, the lightest CP-even Higgs boson mass
can be lifted in the supersymmetric SMs with vector-like particles.Comment: RevTex4, 21 pages, 1 figure, minor corrections, JHEP versio
Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study
Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178
Examining leptogenesis with lepton flavor violation and the dark matter abundance
Within a supersymmetric (SUSY) type-I seesaw framework with flavor-blind
universal boundary conditions, we study the consequences of requiring that the
observed baryon asymmetry of the Universe be explained by either thermal or
non-thermal leptogenesis. In the former case, we find that the parameter space
is very constrained. In the bulk and stop-coannihilation regions of mSUGRA
parameter space (that are consistent with the measured dark matter abundance),
lepton flavor-violating (LFV) processes are accessible at MEG and future
experiments. However, the very high reheat temperature of the Universe needed
after inflation (of about 10^{12} GeV) leads to a severe gravitino problem,
which disfavors either thermal leptogenesis or neutralino dark matter.
Non-thermal leptogenesis in the preheating phase from SUSY flat directions
relaxes the gravitino problem by lowering the required reheat temperature. The
baryon asymmetry can then be explained while preserving neutralino dark matter,
and for the bulk or stop-coannihilation regions LFV processes should be
observed in current or future experiments.Comment: 20 pages, 5 figures, 1 tabl
- …
