59 research outputs found

    Reduced haemodynamic response in the ageing visual cortex measured by absolute fNIRS

    Get PDF
    The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR) of the visual cortex altered as a result of ageing. Visually normal (healthy) participants were presented with a simple visual stimulus (reversing checkerboard). Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21) and older adults (n = 13, mean age 71). Frequency-domain Multi-distance (FD-MD) functional Near-Infrared Spectroscopy (fNIRS) was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast). Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05). The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change

    Diffraction techniques and vibrational spectroscopy opportunities to characterise bones

    Get PDF
    From a histological point of view, bones that allow body mobility and protection of internal organs consist not only of different organic and inorganic tissues but include vascular and nervous elements as well. Moreover, due to its ability to host different ions and cations, its mineral part represents an important reservoir, playing a key role in the metabolic activity of the organism. From a structural point of view, bones can be considered as a composite material displaying a hierarchical structure at different scales. At the nanometre scale, an organic part, i.e. collagen fibrils and an inorganic part, i.e. calcium phosphate nanocrystals are intimately mixed to assure particular mechanical properties

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Changes in the composition of the RNA virome mark evolutionary transitions in green plants

    Get PDF
    Background: The known plant viruses mostly infect angiosperm hosts and have RNA or small DNA genomes. The only other lineage of green plants with a relatively well-studied virome, unicellular chlorophyte algae, is mostly infected by viruses with large DNA genomes. Thus RNA viruses and small DNA viruses seem to completely displace large DNA virus genomes in late branching angiosperms. To understand better the expansion of RNA viruses in the taxonomic span between algae and angiosperms, we analyzed the transcriptomes of 66 non-angiosperm plants characterized by the 1000 Plants Genomes Project. Results: We found homologs of virus RNA-dependent RNA polymerases in 28 non-angiosperm plant species, including algae, mosses, liverworts (Marchantiophyta), hornworts (Anthocerotophyta), lycophytes, a horsetail Equisetum, and gymnosperms. Polymerase genes in algae were most closely related to homologs from double-stranded RNA viruses leading latent or persistent lifestyles. Land plants, in addition, contained polymerases close to the homologs from single-stranded RNA viruses of angiosperms, capable of productive infection and systemic spread. For several polymerases, a cognate capsid protein was found in the same library. Another virus hallmark gene family, encoding the 30 K movement proteins, was found in lycophytes and monilophytes but not in mosses or algae. Conclusions: The broadened repertoire of RNA viruses suggests that colonization of land and growth in anatomical complexity in land plants coincided with the acquisition of novel sets of viruses with different strategies of infection and reproduction.We thank the colleagues at the 1000 Plant Genomes Project for helping us to access the transcriptomes used in this study via the iPlant Collaborative. We are grateful to Javier Forment (IBMCP-CSIC), Vincent Lefort (PhyML), and the E-Biothon team (E-Biothon platform is supported by CNRS, IBM, INRIA, l'Institut Francais de Bioinformatique and SysFera) for expert help with high-performance computing; to Yuri Wolf, Jan Kreuze, Eddie Holmes, and Mang Shi for sharing sequence data and alignments; to Sejo Sabanadzovic, Jan Kreuze, and the anonymous reviewers for helpful virtual discussions and critical remarks; and to Natalia Mushegian for technical assistance. SFF was supported by grants BFU2015-65037P from Spain Ministry of Economy and Competitiveness and PROMETEOII/2014/021 from Generalitat Valenciana. ARM is a Program Director at the US National Science Foundation (NSF); his work on this project was supported by the NSF Independent Research and Development Program, but the statements and opinions expressed herein are made in the personal capacity and do not constitute the endorsement by NSF or the government of the United States.Mushegian, A.; Shipunov, A.; Elena Fito, SF. (2016). Changes in the composition of the RNA virome mark evolutionary transitions in green plants. BMC Biology. 14(68):1-14. https://doi.org/10.1186/s12915-016-0288-8S1141468Roossinck MJ. Plant virus metagenomics: biodiversity and ecology. Annu Rev Genet. 2012;46:357–67.Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology. 2015;479-480:2–25.Yamada T, Onimatsu H, Van Etten JL. Chlorella viruses. Adv Virus Res. 2006;66:293–336.Van Etten JL, Dunigan DD. Chloroviruses: not your everyday plant virus. Trends Plant Sci. 2012;17:1–8.Zhang T, Jiang Y, Dong W. A novel monopartite dsRNA virus isolated from the phytopathogenic fungus Ustilaginoidea virens and ancestrally related to a mitochondria-associated dsRNA in the green alga Bryopsis. Virology. 2014;462:227–35.Wilson WH, Van Etten JL, Allen MJ. The Phycodnaviridae: the story of how tiny giants rule the world. Curr Top Microbiol Immunol. 2009;328:1–42.Iyer LM, Balaji S, Koonin EV, Aravind L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 2006;117:156–84.Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 2013;158:2517–21.Gibbs AJ, Torronen M, Mackenzie AM, Wood 2nd JT, Amstrong JS, Kondo H, et al. The enigmatic genome of Chara australis virus. J Gen Virol. 2011;92:2679–90.Valverde RA, Sabanadzovic S. A novel plant virus with unique properties infecting Japanese holly fern. J Gen Virol. 2009;90:42–9.Han SS, Karasev AV, Ieki H, Iwanami T. Nucleotide sequence and taxonomy of Cycas necrotic stunt virus. Brief report. Arch Virol. 2002;147:2207–14.Lockhart B, Fetzer JL, Olszewski NE. Preliminary characterization of Cycad leaf necrosis virus, the first badnavirus identified in cycads. Phytopathology. 2006;96:S70.Mushegian AR, Elena SF. Evolution of plant virus movement proteins from the 30 K superfamily and of their homologs integrated in plant genomes. Virology. 2015;476:304–15.Maumus F, Epert A, Nogué F, Blanc G. Plant genomes enclose footprints of past infections by giant virus relatives. Nat Commun. 2014;5:4268.Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA. 2014;111:E4859–68.Merchant N, Lyons E, Goff S, Vaughn M, Ware D, Micklos D, et al. The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences. PLoS Biol. 2016;14:e1002342.Becker B, Marin B. Streptophyte algae and the origin of embryophytes. Ann Bot. 2009;103:999–1004.Koonin EV, Dolja VV. A virocentric perspective on the evolution of life. Curr Op Virol. 2013;3:546–57.Matasci N, Huang LH, Yan Z, Carpenter EJ, Wickett NJ, Mirarab S, et al. Data access for the 1000 plants (1KP) project. Gigascience. 2014;3:17.Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 2002;30:482–96.Majumdar I, Kinch LN, Grishin NV. A database of domain definitions for proteins with complex interdomain geometry. PLoS ONE. 2009;4:e5084.Černý J, Černá Bolfíková B, Zanotto PMA, Grubhoffer L, Růžek D. A deep phylogeny of viral and cellular right-hand polymerases. Infec Genet Evol. 2015;36:275–86.Iyer LM, Koonin EV, Aravind L. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol. 2003;3:1.Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.Koga R, Horiuchi H, Fukuhara T. Double-stranded RNA replicons associated with chloroplasts of a green alga, Bryopsis cinicola. Plant Mol Biol. 2003;51:991–9.Jablonski SA, Morrow CD. Mutation of the aspartic acid residues of the GDD sequence motif of poliovirus RNA-dependent RNA polymerase results in enzymes with altered metal ion requirements for activity. J Virol. 1995;69:1532–9.Morin B, Whelan SPJ. La protéine L des Mononegavirales. Virologie. 2012;16:258–68.Liang B, Li Z, Jenni S, Rahmeh AA, Morin BM, Grant T, et al. Structure of the L protein of Vesicular stomatitis virus from electron cryomicroscopy. Cell. 2015;162:314–27.Chabannes M, Iskra-Caruana ML. Endogenous pararetroviruses – a reservoir of virus infection in plants. Curr Opin Virol. 2013;3:615–20.Bousios A, Darzentas N. Sirevirus LTR retrotransposons: phylogenetic misconceptions in the plant world. Mob DNA. 2013;4:9.Bertsch C, Beuve M, Dolja VV, Wirth M, Pelsy F, Herrbach E, et al. Retention of the virus-derived sequences in the nuclear genome of grapevine as a potential pathway to virus resistance. Biol Direct. 2009;4:21.Roossinck MJ. Lifestyle of plant viruses. Philos Trans R Soc B. 2010;365:1899–905.Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, et al. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res. 2014;188:128–41.Koonin EV, Wolf YI, Nagasaki K, Dolja VV. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol. 2008;6:925–39.Poch O, Sauvaget I, Delarue M, Tordo N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 1989;8:3867–74.Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242.Li CX, Shi M, Tian JH, Lin XD, Kang YJ, Chen LJ, et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife. 2015;29:4.Yutin N, Wolf YI, Raoult D, Koonin EV. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J. 2009;6:223.Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, et al. Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages. BMC Evol Biol. 2012;12:91.Atsatt PR, Whiteside MD. Novel symbiotic protoplasts formed by endophytic fungi explain their hidden existence, lifestyle switching, and diversity within the plant kingdom. PLoS ONE. 2014;9:e95266.Hom EF, Murray AW. Plant-fungal ecology. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science. 2014;345:94–8.Magallón S, Hilu KW, Quandt D. Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot. 2013;100:556–73.Johnson MT, Carpenter EJ, Tian Z, Bruskiewich R, Burris JN, Carrigan CT, et al. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One. 2012;7:e50226.Kreuze J. siRNA deep sequencing and assembly: piecing together viral infections. In: Gullino ML, Bonants PJM, editors. Detection and diagnostics of plant pathogens. Dordrecht: Springer; 2014. p. 21–38.Chávez Montes RA, de Fátima R-CF, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, et al. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun. 2014;5:3722.Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucl Acids Res. 2015;43:D222–6.Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113.Söding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2015;33:W244–8.Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25(7):1307–20.Daydé M, Depardon B, Franc A, Gibrat JF, Guillier R, Karami Y, Sutter F, Taddese B, Chabbert M, Thérond S. E-Biothon: an experimental platform for bioinformatics. 2015 Computer Science and Information Technologies (CSIT) 2015;1-4.Okuno K, Hama T, Takeshita M, Furuya N, Takanami Y. New potyvirus isolated from Cryptotaenia japonica. J Gen Plant Pathol. 2003;69:138–42
    • …
    corecore