127 research outputs found

    Spin pumping in magnetic trilayer structures with an MgO barrier

    Get PDF
    We present a study of the interaction mechanisms in magnetic trilayer structures with an MgO barrier grown by molecular beam epitaxy. The interlayer exchange coupling, A ex, is determined using SQUID magnetometry and ferromagnetic resonance (FMR), displaying an unexpected oscillatory behaviour as the thickness, t MgO, is increased from 1 to 4 nm. Transmission electron microscopy confirms the continuity and quality of the tunnelling barrier, eliminating the prospect of exchange arising from direct contact between the two ferromagnetic layers. The Gilbert damping is found to be almost independent of the MgO thickness, suggesting the suppression of spin pumping. The element-specific technique of X-ray detected FMR reveals a small dynamic exchange interaction, acting in concert with the static interaction to induce coupled precession across the multilayer stack. These results highlight the potential of spin pumping and spin transfer torque for device applications in magnetic tunnel junctions relying on commonly used MgO barriers

    2020 APHRS/HRS Expert Consensus Statement on the Investigation of Decedents with Sudden Unexplained Death and Patients with Sudden Cardiac Arrest, and of Their Families.

    Get PDF
    This international multidisciplinary document intends to provide clinicians with evidence-based practical patient-centered recommendations for evaluating patients and decedents with (aborted) sudden cardiac arrest and their families. The document includes a framework for the investigation of the family allowing steps to be taken, should an inherited condition be found, to minimize further events in affected relatives. Integral to the process is counseling of the patients and families, not only because of the emotionally charged subject, but because finding (or not finding) the cause of the arrest may influence management of family members. The formation of multidisciplinary teams is essential to provide a complete service to the patients and their families, and the varied expertise of the writing committee was formulated to reflect this need. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by Class of Recommendation and Level of Evidence. The recommendations were opened for public comment and reviewed by the relevant scientific and clinical document committees of the Asia Pacific Heart Rhythm Society (APHRS) and the Heart Rhythm Society (HRS); the document underwent external review and endorsement by the partner and collaborating societies. While the recommendations are for optimal care, it is recognized that not all resources will be available to all clinicians. Nevertheless, this document articulates the evaluation that the clinician should aspire to provide for patients with sudden cardiac arrest, decedents with sudden unexplained death, and their families

    Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study.

    Get PDF
    Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities

    Dronedarone in high-risk permanent atrial fibrillation

    Get PDF
    BACKGROUND: Dronedarone restores sinus rhythm and reduces hospitalization or death in intermittent atrial fibrillation. It also lowers heart rate and blood pressure and has antiadrenergic and potential ventricular antiarrhythmic effects. We hypothesized that dronedarone would reduce major vascular events in high-risk permanent atrial fibrillation. METHODS: We assigned patients who were at least 65 years of age with at least a 6-month history of permanent atrial fibrillation and risk factors for major vascular events to receive dronedarone or placebo. The first coprimary outcome was stroke, myocardial infarction, systemic embolism, or death from cardiovascular causes. The second coprimary outcome was unplanned hospitalization for a cardiovascular cause or death. RESULTS: After the enrollment of 3236 patients, the study was stopped for safety reasons. The first coprimary outcome occurred in 43 patients receiving dronedarone and 19 receiving placebo (hazard ratio, 2.29; 95% confidence interval [CI], 1.34 to 3.94; P = 0.002). There were 21 deaths from cardiovascular causes in the dronedarone group and 10 in the placebo group (hazard ratio, 2.11; 95% CI, 1.00 to 4.49; P = 0.046), including death from arrhythmia in 13 patients and 4 patients, respectively (hazard ratio, 3.26; 95% CI, 1.06 to 10.00; P = 0.03). Stroke occurred in 23 patients in the dronedarone group and 10 in the placebo group (hazard ratio, 2.32; 95% CI, 1.11 to 4.88; P = 0.02). Hospitalization for heart failure occurred in 43 patients in the dronedarone group and 24 in the placebo group (hazard ratio, 1.81; 95% CI, 1.10 to 2.99; P = 0.02). CONCLUSIONS: Dronedarone increased rates of heart failure, stroke, and death from cardiovascular causes in patients with permanent atrial fibrillation who were at risk for major vascular events. Our data show that this drug should not be used in such patients. (Funded by Sanofi-Aventis; PALLAS ClinicalTrials.gov number, NCT01151137.) Copyright © 2011 Massachusetts Medical Society. All rights reserved.published_or_final_versio

    Induction of the GABA Cell Phenotype: An In Vitro Model for Studying Neurodevelopmental Disorders

    Get PDF
    Recent studies of the hippocampus have suggested that a network of genes is associated with the regulation of the GAD67 (GAD1) expression and may play a role in γ-amino butyric acid (GABA) dysfunction in schizophrenia (SZ) and bipolar disorder (BD). To obtain a more detailed understanding of how GAD67 regulation may result in GABAergic dysfunction, we have developed an in vitro model in which GABA cells are differentiated from the hippocampal precursor cell line, HiB5. Growth factors, such as PDGF, and BDNF, regulate the GABA phenotype by inducing the expression of GAD67 and stimulating the growth of cellular processes, many with growth cones that form appositions with the cell bodies and processes of other GAD67-positive cells. These changes are associated with increased expression of acetylated tubulin, microtubule-associated protein 2 (MAP2) and the post-synaptic density protein 95 (PSD95). The addition of BDNF, together with PDGF, increases the levels of mRNA and protein for GAD67, as well as the high affinity GABA uptake protein, GAT1. These changes are associated with increased concentrations of GABA in the cytoplasm of “differentiated” HiB5 neurons. In the presence of Ca2+ and K+, newly synthesized GABA is released extracellularly. When the HiB5 cells appear to be fully differentiated, they also express GAD65, parvalbumin and calbindin, and GluR subtypes as well as HDAC1, DAXX, PAX5, Runx2, associated with GAD67 regulation. Overall, these results suggest that the HiB5 cells can differentiate into functionally mature GABA neurons in the presence of gene products that are associated with GAD67 regulation in the adult hippocampus

    Aortic stiffness in lone atrial fibrillation: A novel risk factor for arrhythmia recurrence

    Get PDF
    BACKGROUND Recent community-based research has linked aortic stiffness to the development of atrial fibrillation. We posit that aortic stiffness contributes to adverse atrial remodeling leading to the persistence of atrial fibrillation following catheter ablation in lone atrial fibrillation patients, despite the absence of apparent structural heart disease. Here, we aim to evaluate aortic stiffness in lone atrial fibrillation patients and determine its association with arrhythmia re currence following radio-frequency catheter ablation. METHODS We studied 68 consecutive lone atrial fibrillation patients who underwent catheter ablation procedure for atrial fibrillation and 50 healthy age- and sex-matched community controls. We performed radial artery applanation tonometry to obtain central measures of aortic stiffness: pulse pressure, augmentation pressure and augmentation index. Following ablation, arrhythmia recurrence was monitored at months 3, 6, 9, 12 and 6 monthly thereafter. RESULTS Compared to healthy controls, lone atrial fibrillation patients had significantly elevated peripheral pulse pressure, central pulse pressure, augmentation pressure and larger left atrial dimensions (all P<0.05). During a mean follow-up of 2.9±1.4 years, 38 of the 68 lone atrial fibrillation patients had atrial fibrillation recurrence after initial catheter ablation procedure. Neither blood pressure nor aortic stiffness indices differed between patients with and without atrial fibrillation recurrence. However, patients with highest levels (≥75th percentile) of peripheral pulse pressure, central pulse pressure and augmentation pressure had higher atrial fibrillation recurrence rates (all P<0.05). Only central aortic stiffness indices were associated with lower survival free from atrial fibrillation using Kaplan-Meier analysis. CONCLUSION Aortic stiffness is an important risk factor in patients with lone atrial fibrillation and contributes to higher atrial fibrillation recurrence following catheter ablation procedure.Dennis H. Lau, Melissa E. Middeldorp, Anthony G. Brooks, Anand N. Ganesan, Kurt C. Roberts-Thomson, Martin K. Stiles, Darryl P. Leong, Hany S. Abed, Han S. Lim, Christopher X. Wong, Scott R. Willoughby, Glenn D. Young, Jonathan M. Kalman, Walter P. Abhayaratna, Prashanthan Sander

    Multi-state Modeling of Biomolecules

    Get PDF
    Multi-state modeling of biomolecules refers to a series of techniques used to represent and compute the behavior of biological molecules or complexes that can adopt a large number of possible functional states. Biological signaling systems often rely on complexes of biological macromolecules that can undergo several functionally significant modifications that are mutually compatible. Thus, they can exist in a very large number of functionally different states. Modeling such multi-state systems poses two problems: the problem of how to describe and specify a multi-state system (the “specification problem”) and the problem of how to use a computer to simulate the progress of the system over time (the “computation problem”). To address the specification problem, modelers have in recent years moved away from explicit specification of all possible states and towards rule-based formalisms that allow for implicit model specification, including the κ-calculus [1], BioNetGen [2]–[5], the Allosteric Network Compiler [6], and others [7], [8]. To tackle the computation problem, they have turned to particle-based methods that have in many cases proved more computationally efficient than population-based methods based on ordinary differential equations, partial differential equations, or the Gillespie stochastic simulation algorithm [9], [10]. Given current computing technology, particle-based methods are sometimes the only possible option. Particle-based simulators fall into two further categories: nonspatial simulators, such as StochSim [11], DYNSTOC [12], RuleMonkey [9], [13], and the Network-Free Stochastic Simulator (NFSim) [14], and spatial simulators, including Meredys [15], SRSim [16], [17], and MCell [18]–[20]. Modelers can thus choose from a variety of tools, the best choice depending on the particular problem. Development of faster and more powerful methods is ongoing, promising the ability to simulate ever more complex signaling processes in the future

    Tavistock Adult Depression Study (TADS): a randomised controlled trial of psychoanalytic psychotherapy for treatment-resistant/treatment-refractory forms of depression

    Get PDF
    ABSTRACT: BACKGROUND: Long-term forms of depression represent a significant mental health problem for which there is a lack of effective evidence-based treatment. This study aims to produce findings about the effectiveness of psychoanalytic psychotherapy in patients with treatment-resistant/treatment-refractory depression and to deepen the understanding of this complex form of depression. METHODS: INDEX GROUP: Patients with treatment resistant/treatment refractory depression. DEFINITION & INCLUSION CRITERIA: Current major depressive disorder, 2 years history of depression, a minimum of two failed treatment attempts, [greater than or equal to]14 on the HRSD or [greater than or equal to]21 on the BDI, plus complex personality and/or psycho-social difficulties. EXCLUSION CRITERIA: Moderate or severe learning disability, psychotic illness, bipolar disorder, substance dependency or receipt of test intervention in the previous two years. DESIGN: Pragmatic, randomised controlled trial with qualitative and clinical components. TEST INTERVENTION: 18 months of weekly psychoanalytic psychotherapy, manualised and fidelity-assessed using the Psychotherapy Process Q-Sort. CONTROL CONDITION: Treatment as usual, managed by the referring practitioner. RECRUITMENT: GP referrals from primary care. RCT MAIN OUTCOME: HRSD (with [less than or equal to]14 as remission). SECONDARY OUTCOMES: depression severity (BDI-II), degree of co-morbid disorders Axis-I and Axis-II (SCID-I and SCID-II-PQ), quality of life and functioning (GAF, CORE, Q-les-Q), object relations (PROQ2a), Cost-effectiveness analysis (CSRI and GP medical records). FOLLOW-UP: 2 years. Plus: a). Qualitative study of participants' and therapists' problem formulation, experience of treatment and of participation in trial. (b) Narrative data from semi-structured pre/post psychodynamic interviews to produce prototypes of responders and non-responders. (c) Clinical case-studies of sub-types of TRD and of change. DISCUSSION: TRD needs complex, long-term intervention and extended research follow-up for the proper evaluation of treatment outcome. This pushes at the limits of the design of randomised therapeutic trials,. We discuss some of the consequent problems and suggest how they may be mitigated. Trial registration Current Controlled Trials ISRCTN40586372
    corecore