39 research outputs found

    Marine Dynamics and Productivity in the Bay of Bengal

    Get PDF
    The Bay of Bengal provides important ecosystem services to the Bangladesh delta. It is also subject to the consequences of climate change as monsoon atmospheric circulation and fresh water input from the major rivers are the dominating influences. Changes in marine circulation will affect patterns of biological production through alterations in the supply of nutrients to photosynthesising plankton. Productivity in the northern Bay will also be sensitive to changes in riverborne nutrients. In turn, these changes could influence potential fish catch. The Bay also affects the physical environment of Bangladesh: relative sea-level rise is expected to be in the range of 0.5–1.7 m by 2100, and changing climate could affect the development of tropical cyclones over the Bay

    Seafarer citizen scientist ocean transparency data as a resource for phytoplankton and climate research

    Get PDF
    The oceans' phytoplankton that underpin the marine food chain appear to be changing in abundance due to global climate change. Here, we compare the first four years of data from a citizen science ocean transparency study, conducted by seafarers using home-made Secchi Disks and a free Smartphone application called Secchi, with contemporaneous satellite ocean colour measurements. Our results show seafarers collect useful Secchi Disk measurements of ocean transparency that could help future assessments of climate-induced changes in the phytoplankton when used to extend historical Secchi Disk data

    Coupled Land-Atmosphere Regional Model Reduces Dry Bias in Indian Summer Monsoon Rainfall Simulated by CFSv2

    No full text
    Global climate models including the Climate Forecast System version 2, the operational model used for prediction of Indian summer monsoon rainfall by the India Meteorological Department, has dry precipitation bias, mostly over densely populated Ganga basin. This restricts the use of model output in hydrological simulations/forecasts. We use regional atmospheric Weather Research and Forecasting model coupled with land surface models, driven by the boundary conditions from Climate Forecast System version 2. We find significant reduction in the dry bias of Indian summer monsoon rainfall with regional land-atmosphere model and this attributes to (a) improved moisture transport from Western and Upper Indian Ocean to Ganga Basin and (b) improved precipitation recycling over the Ganga basin. We find that the smoothened topography in the global model allows advection of cold dry subtropical air into the Indian monsoon region, contributing to the cold temperature and dry precipitation bias. These results have important implications for monsoon simulations in developing operational hydroclimatic prediction system in India. Plain Language Summary The operational monsoon prediction model for India, Climate Forecast System version 2, has significant dry bias in precipitation over the Ganga basin, and this restricts the use of model output for hydrologic prediction. We attribute such bias to the lack of representation of land surface processes and characteristics in the model. We show that an improved representation of land characteristics in a regional coupled atmospheric-land model improves not only the land-atmosphere interactions but also the moisture contributions from distant oceanic sources. This finally results into improved simulations of monsoon

    Processes associated with the Tropical Indian Ocean subsurface temperature bias in a Coupled Model

    No full text
    Subsurface temperature biases in coupled models can seriously impair their capability in generating skillful seasonal forecasts. The National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), coupled model, which is used for seasonal forecast in several countries including India, displays warm (cold) subsurface (surface) temperature bias in the tropical Indian Ocean (TIO), with deeper than observed mixed layer and thermocline. In the model, the maximum warm bias is reported between 150- and 200-m depth. Detailed analysis reveals that the enhanced vertical mixing by strong vertical shear of horizontal currents is primarily responsible for TIO subsurface warming. Weak upper-ocean stability corroborated by surface cold and subsurface warm bias further strengthens the subsurface warm bias in the model. Excess inflow of warm subsurface water from Indonesian Throughflow to the TIO region is partially contributing to the warm bias mainly over the southern TIO region. Over the north Indian Ocean, Ekman convergence and downwelling due to wind stress bias deepen the thermocline, which do favor subsurface warming. Further, upper-ocean meridional and zonal cells are deeper in CFSv2 compared to the Ocean Reanalysis System data manifesting the deeper mixing. This study outlines the need for accurate representation of vertical structure in horizontal currents and associated vertical gradients to simulate subsurface temperatures for skillful seasonal forecasts

    Indian Ocean corals reveal crucial role of World War II bias for twentieth century warming estimates

    Get PDF
    © 2017 The Author(s). The western Indian Ocean has been warming faster than any other tropical ocean during the 20 th century, and is the largest contributor to the global mean sea surface temperature (SST) rise. However, the temporal pattern of Indian Ocean warming is poorly constrained and depends on the historical SST product. As all SST products are derived from the International Comprehensive Ocean-Atmosphere dataset (ICOADS), it is challenging to evaluate which product is superior. Here, we present a new, independent SST reconstruction from a set of Porites coral geochemical records from the western Indian Ocean. Our coral reconstruction shows that the World War II bias in the historical sea surface temperature record is the main reason for the differences between the SST products, and affects western Indian Ocean and global mean temperature trends. The 20 th century Indian Ocean warming pattern portrayed by the corals is consistent with the SST product from the Hadley Centre (HadSST3), and suggests that the latter should be used in climate studies that include Indian Ocean SSTs. Our data shows that multi-core coral temperature reconstructions help to evaluate the SST products. Proxy records can provide estimates of 20 th century SST that are truly independent from the ICOADS data base

    Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India

    Get PDF
    The depletion of groundwater resources threatens food and water security in India. However, the relative influence of groundwater pumping and climate variability on groundwater availability and storage remains unclear. Here we show from analyses of satellite and local well data spanning the past decade that long-term changes in monsoon precipitation are driving groundwater storage variability in most parts of India either directly by changing recharge or indirectly by changing abstraction. We find that groundwater storage has declined in northern India at the rate of 2 cm yr−1 and increased by 1 to 2 cm yr−1 in southern India between 2002 and 2013. We find that a large fraction of the total variability in groundwater storage in north-central and southern India can be explained by changes in precipitation. Groundwater storage variability in northwestern India can be explained predominantly by variability in abstraction for irrigation, which is in turn influenced by changes in precipitation. Declining precipitation in northern India is linked to Indian Ocean warming, suggesting a previously unrecognized teleconnection between ocean temperatures and groundwater storage.by Akarsh Asoka, Tom Gleeson, Yoshihide Wada and Vimal Mishr
    corecore