310 research outputs found

    Paediatric olecranon fractures: a systematic review.

    Get PDF
    The optimal management and long-term outcomes of olecranon fractures in the paediatric population is not well understood. This systematic review aims to analyse the literature on the management of paediatric olecranon fractures and the long-term implications.A systematic review of several databases was conducted according to PRISMA guidelines. English-language studies evaluating the management of isolated paediatric olecranon fractures were included. Data extracted included demographics, classifications, conservative and operative treatment methods and outcomes.Fifteen articles fitting the inclusion criteria were included. There were 11 case series and four retrospective comparative series. The reported studies included 299 fractures in 280 patients.The mechanism of injury was predominantly low energy. Fractures displaced 4 mm were commonly treated operatively with generally good results, with tension band wire and suture fixation being the most common treatment modalities. Weight > 50 kg was associated with failure of suture fixation.In those studies that reported olecranon fractures with associated elbow injuries (e.g. radial head fractures) outcomes were poorer. Forty-six fractures were in patients with osteogenesis imperfecta, who sustained a higher rate of re-fracture after removal of metalwork and contralateral olecranon fracture.Despite a relatively low evidence base pool of studies, the aggregate data support the non-operative treatment of isolated undisplaced olecranon fractures with good results, and support the operative treatment of fractures displaced ≥ 4 mm. Cite this article: EFORT Open Rev 2020;5:280-288. DOI: 10.1302/2058-5241.5.190082

    Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows

    Get PDF
    We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido

    Declining Burden of Malaria Over two Decades in a Rural Community of Muheza District, North-Eastern Tanzania.

    Get PDF
    The recently reported declining burden of malaria in some African countries has been attributed to scaling-up of different interventions although in some areas, these changes started before implementation of major interventions. This study assessed the long-term trends of malaria burden for 20 years (1992--2012) in Magoda and for 15 years in Mpapayu village of Muheza district, north-eastern Tanzania, in relation to different interventions as well as changing national malaria control policies.\ud Repeated cross-sectional surveys recruited individuals aged 0 -- 19 years from the two villages whereby blood smears were collected for detection of malaria parasites by microscopy. Prevalence of Plasmodium falciparum infections and other indices of malaria burden (prevalence of anaemia, splenomegaly and gametocytes) were compared across the years and between the study villages. Major interventions deployed including mobile clinic, bed nets and other research activities, and changes in national malaria control policies were also marked. In Magoda, the prevalence of P. falciparum infections initially decreased between 1992 and 1996 (from 83.5 to 62.0%), stabilized between 1996 and 1997, and further declined to 34.4% in 2004. A temporary increase between 2004 and 2008 was followed by a progressive decline to 7.2% in 2012, which is more than 10-fold decrease since 1992. In Mpapayu (from 1998), the highest prevalence was 81.5% in 1999 and it decreased to 25% in 2004. After a slight increase in 2008, a steady decline followed, reaching <5% from 2011 onwards. Bed net usage was high in both villages from 1999 to 2004 (>=88%) but it decreased between 2008 and 2012 (range, 28% - 68%). After adjusting for the effects of bed nets, age, fever and year of study, the risk of P. falciparum infections decreased significantly by >=97% in both villages between 1999 and 2012 (p < 0.001). The prevalence of splenomegaly (>40% to <1%) and gametocytes (23% to <1%) also decreased in both villages.Discussion and conclusionsA remarkable decline in the burden of malaria occurred between 1992 and 2012 and the initial decline (1992 -- 2004) was most likely due to deployment of interventions, such as bed nets, and better services through research activities. Apart from changes of drug policies, the steady decline observed from 2008 occurred when bed net coverage was low suggesting that other factors contributed to the most recent pattern. These results suggest that continued monitoring is required to determine causes of the changing malaria epidemiology and also to monitor the progress towards maintaining low malaria transmission and reaching related millennium development goals

    Regulation of Neuronal Cell Death by c-Abl-Hippo/MST2 Signaling Pathway

    Get PDF
    BACKGROUND: Mammalian Ste20-like kinases (MSTs) are the mammalian homologue of Drosophila hippo and play critical roles in regulation of cell death, organ size control, proliferation and tumorigenesis. MSTs exert pro-apoptotic function through cleavage, autophosphorylation and in turn phosphorylation of downstream targets, such as Histone H2B and FOXO (Forkhead box O). Previously we reported that protein kinase c-Abl mediates oxidative stress-induced neuronal cell death through phosphorylating MST1 at Y433, which is not conserved among mammalian MST2, Drosophila Hippo and C.elegans cst-1/2. METHODOLOGY/PRINCIPAL FINDINGS: Using immunoblotting, in vitro kinase and cell death assay, we demonstrate that c-Abl kinase phosphorylates MST2 at an evolutionarily conserved site, Y81, within the kinase domain. We further show that the phosphorylation of MST2 by c-Abl leads to the disruption of the interaction with Raf-1 proteins and the enhancement of homodimerization of MST2 proteins. It thereby enhances the MST2 activation and induces neuronal cell death. CONCLUSIONS/SIGNIFICANCE: The identification of the c-Abl tyrosine kinase as a novel upstream activator of MST2 suggests that the conserved c-Abl-MST signaling cascade plays an important role in oxidative stress-induced neuronal cell death

    Evolutionary History of the Vertebrate Mitogen Activated Protein Kinases Family

    Get PDF
    Background: The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear. Methodology/Principal Findings: The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gen

    High Density Microarray Analysis Reveals New Insights into Genetic Footprints of Listeria monocytogenes Strains Involved in Listeriosis Outbreaks

    Get PDF
    Listeria monocytogenes, a foodborne bacterial pathogen, causes invasive and febrile gastroenteritis forms of listeriosis in humans. Both invasive and febrile gastroenteritis listeriosis is caused mostly by serotypes 1/2a, 1/2b and 4b strains. The outbreak strains of serotype 1/2a and 4b could be further classified into several epidemic clones but the genetic bases for the diverse pathophysiology have been unsuccessful. DNA microarray provides an important tool to scan the entire genome for genetic signatures that may distinguish the L. monocytogenes strains belonging to different outbreaks. We have designed a pan-genomic microarray chip (Listeria GeneChip) containing sequences from 24 L. monocytogenes strains. The chip was designed to identify the presence/absence of genomic sequences, analyze transcription profiles and identify SNPs. Analysis of the genomic profiles of 38 outbreak strains representing 1/2a, 1/2b and 4b serotypes, revealed that the strains formed distinct genetic clusters adhering to their serotypes and epidemic clone types. Although serologically 1/2a and 1/b strains share common antigenic markers microarray analysis revealed that 1/2a strains are further apart from the closely related 1/2b and 4b strains. Within any given serotype and epidemic clone type the febrile gastroenteritis and invasive strains can be further distinguished based on several genetic markers including large numbers of phage genome, and intergenic sequences. Our results showed that the microarray-based data can be an important tool in characterization of L. monocytogenes strains involved in both invasive and gastroenteritis outbreaks. The results for the first time showed that the serotypes and epidemic clones are based on extensive pan-genomic variability and the 1/2b and 4bstrains are more closely related to each other than the 1/2a strains. The data also supported the hypothesis that the strains causing these two diverse outbreaks are genotypically different and this finding might be important in understanding the pathophysiology of this organism

    Mitochondrial Structure, Function and Dynamics Are Temporally Controlled by c-Myc

    Get PDF
    Although the c-Myc (Myc) oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS), the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc−/− fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC) are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell

    Complement system activation contributes to the ependymal damage induced by microbial neuraminidase

    Get PDF
    Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement
    corecore