822 research outputs found

    Multi-step self-guided pathways for shape-changing metamaterials

    Get PDF
    Multi-step pathways, constituted of a sequence of reconfigurations, are central to a wide variety of natural and man-made systems. Such pathways autonomously execute in self-guided processes such as protein folding and self-assembly, but require external control in macroscopic mechanical systems, provided by, e.g., actuators in robotics or manual folding in origami. Here we introduce shape-changing mechanical metamaterials, that exhibit self-guided multi-step pathways in response to global uniform compression. Their design combines strongly nonlinear mechanical elements with a multimodal architecture that allows for a sequence of topological reconfigurations, i.e., modifications of the topology caused by the formation of internal self-contacts. We realized such metamaterials by digital manufacturing, and show that the pathway and final configuration can be controlled by rational design of the nonlinear mechanical elements. We furthermore demonstrate that self-contacts suppress pathway errors. Finally, we demonstrate how hierarchical architectures allow to extend the number of distinct reconfiguration steps. Our work establishes general principles for designing mechanical pathways, opening new avenues for self-folding media, pluripotent materials, and pliable devices in, e.g., stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See https://youtu.be/8m1QfkMFL0I for an explanatory vide

    A blood gene expression marker of early Alzheimer's disease.

    Get PDF
    PublishedJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tA marker of Alzheimer's disease (AD) that can accurately diagnose disease at the earliest stage would significantly support efforts to develop treatments for early intervention. We have sought to determine the sensitivity and specificity of peripheral blood gene expression as a diagnostic marker of AD using data generated on HT-12v3 BeadChips. We first developed an AD diagnostic classifier in a training cohort of 78 AD and 78 control blood samples and then tested its performance in a validation group of 26 AD and 26 control and 118 mild cognitive impairment (MCI) subjects who were likely to have an AD-endpoint. A 48 gene classifier achieved an accuracy of 75% in the AD and control validation group. Comparisons were made with a classifier developed using structural MRI measures, where both measures were available in the same individuals. In AD and control subjects, the gene expression classifier achieved an accuracy of 70% compared to 85% using MRI. Bootstrapping validation produced expression and MRI classifiers with mean accuracies of 76% and 82%, respectively, demonstrating better concordance between these two classifiers than achieved in a single validation population. We conclude there is potential for blood expression to be a marker for AD. The classifier also predicts a large number of people with MCI, who are likely to develop AD, are more AD-like than normal with 76% of subjects classified as AD rather than control. Many of these people do not have overt brain atrophy, which is known to emerge around the time of AD diagnosis, suggesting the expression classifier may detect AD earlier in the prodromal phase. However, we accept these results could also represent a marker of diseases sharing common etiology.InnoMed, European Union of the Sixth Framework programAlzheimer’s Research UKJohn and Lucille van Geest FoundationNIHRBiomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation TrustInstitute of Psychiatry Kings College LondonNIA/NIH RC

    Plasma based markers of [11C] PiB-PET brain amyloid burden.

    Get PDF
    PublishedJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tChanges in brain amyloid burden have been shown to relate to Alzheimer's disease pathology, and are believed to precede the development of cognitive decline. There is thus a need for inexpensive and non-invasive screening methods that are able to accurately estimate brain amyloid burden as a marker of Alzheimer's disease. One potential method would involve using demographic information and measurements on plasma samples to establish biomarkers of brain amyloid burden; in this study data from the Alzheimer's Disease Neuroimaging Initiative was used to explore this possibility. Sixteen of the analytes on the Rules Based Medicine Human Discovery Multi-Analyte Profile 1.0 panel were found to associate with [(11)C]-PiB PET measurements. Some of these markers of brain amyloid burden were also found to associate with other AD related phenotypes. Thirteen of these markers of brain amyloid burden--c-peptide, fibrinogen, alpha-1-antitrypsin, pancreatic polypeptide, complement C3, vitronectin, cortisol, AXL receptor kinase, interleukin-3, interleukin-13, matrix metalloproteinase-9 total, apolipoprotein E and immunoglobulin E--were used along with co-variates in multiple linear regression, and were shown by cross-validation to explain >30% of the variance of brain amyloid burden. When a threshold was used to classify subjects as PiB positive, the regression model was found to predict actual PiB positive individuals with a sensitivity of 0.918 and a specificity of 0.545. The number of APOE [Symbol: see text] 4 alleles and plasma apolipoprotein E level were found to contribute most to this model, and the relationship between these variables and brain amyloid burden was explored.Alzheimer's Disease Neuroimaging Initiative (ADNI)Canadian Institutes of Health ResearchFoundation for the National Institutes of HealthNational Institutes of HealthInnoMed, European Union of the Sixth Framework programNational Institutes for Health Research Biomedical Research Centre for Mental Health at the South London and Maudsley National Health Service Foundation TrustInstitute of Psychiatry, King's College Londo

    Plasma proteins predict conversion to dementia from prodromal disease.

    Get PDF
    PublishedJournal ArticleMulticenter StudyResearch Support, Non-U.S. Gov'tBACKGROUND: The study aimed to validate previously discovered plasma biomarkers associated with AD, using a design based on imaging measures as surrogate for disease severity and assess their prognostic value in predicting conversion to dementia. METHODS: Three multicenter cohorts of cognitively healthy elderly, mild cognitive impairment (MCI), and AD participants with standardized clinical assessments and structural neuroimaging measures were used. Twenty-six candidate proteins were quantified in 1148 subjects using multiplex (xMAP) assays. RESULTS: Sixteen proteins correlated with disease severity and cognitive decline. Strongest associations were in the MCI group with a panel of 10 proteins predicting progression to AD (accuracy 87%, sensitivity 85%, and specificity 88%). CONCLUSIONS: We have identified 10 plasma proteins strongly associated with disease severity and disease progression. Such markers may be useful for patient selection for clinical trials and assessment of patients with predisease subjective memory complaints.Medical Research Council (MRC)Alzheimer’s Research UKThe National Institute for Health Research (NIHR) Biomedical Research CentreBiomedical Research Unit for DementiaAddNeuroMed through the EU FP6 programInnovative Medicines Initiative Joint Undertaking under an EMIF grantEuropean Union’s Seventh Framework Programme (FP7/2007-2013

    Relationships between intensity, duration, cumulative dose, and timing of smoking with age at menopause: A pooled analysis of individual data from 17 observational studies.

    Full text link
    BackgroundCigarette smoking is associated with earlier menopause, but the impact of being a former smoker and any dose-response relationships on the degree of smoking and age at menopause have been less clear. If the toxic impact of cigarette smoking on ovarian function is irreversible, we hypothesized that even former smokers might experience earlier menopause, and variations in intensity, duration, cumulative dose, and age at start/quit of smoking might have varying impacts on the risk of experiencing earlier menopause.Methods and findingsA total of 207,231 and 27,580 postmenopausal women were included in the cross-sectional and prospective analyses, respectively. They were from 17 studies in 7 countries (Australia, Denmark, France, Japan, Sweden, United Kingdom, United States) that contributed data to the International collaboration for a Life course Approach to reproductive health and Chronic disease Events (InterLACE). Information on smoking status, cigarettes smoked per day (intensity), smoking duration, pack-years (cumulative dose), age started, and years since quitting smoking was collected at baseline. We used multinomial logistic regression models to estimate multivariable relative risk ratios (RRRs) and 95% confidence intervals (CIs) for the associations between each smoking measure and categorised age at menopause (ConclusionsThe probability of earlier menopause is positively associated with intensity, duration, cumulative dose, and earlier initiation of smoking. Smoking duration is a much stronger predictor of premature and early menopause than others. Our findings highlight the clear benefits for women of early smoking cessation to lower their excess risk of earlier menopause

    The InterLACE study: Design, Data Harmonization and Characteristics Across 20 Studies on Women’s Health

    Get PDF
    Objectives: The International Collaboration for a Life Course Approach to Reproductive Health and Chronic Disease Events (InterLACE) project is a global research collaboration that aims to advance understanding of women’s reproductive health in relation to chronic disease risk by pooling individual participant data from several cohort and cross-sectional studies. The aim of this paper is to describe the characteristics of contributing studies and to present the distribution of demographic and reproductive factors and chronic disease outcomes in InterLACE. Study design: InterLACE is an individual-level pooled study of 20 observational studies (12 of which are longitudinal) from ten countries. Variables were harmonized across studies to create a new and systematic synthesis of life-course data. Main outcome measures: Harmonized data were derived in three domains: 1) socio-demographic and lifestyle factors, 2) female reproductive characteristics, and 3) chronic disease outcomes (cardiovascular disease (CVD) and diabetes). Results: InterLACE pooled data from 229,054 mid-aged women. Overall, 76% of the women were Caucasian and 22% Japanese; other ethnicities (of 300 or more participants) included Hispanic/Latin American (0.2%), Chinese (0.2%), Middle Eastern (0.3%), African/black (0.5%), and Other (1.0%). The median age at baseline was 47 years (Inter-quartile range (IQR): 41–53), and that at the last follow-up was 56 years (IQR: 48–64). Regarding reproductive characteristics, half of the women (49.8%) had their first menstruation (menarche) at 12–13 years of age. The distribution of menopausal status and the prevalence of chronic disease varied considerably among studies. At baseline, most women (57%) were pre- or peri-menopausal, 20% reported a natural menopause (range 0.8–55.6%) and the remainder had surgery or were taking hormones. By the end of follow-up, the prevalence rates of CVD and diabetes were 7.2% (range 0.9–24.6%) and 5.1% (range 1.3–13.2%), respectively. Conclusions: The scale and heterogeneity of InterLACE data provide an opportunity to strengthen evidence concerning the relationships between reproductive health through life and subsequent risks of chronic disease, including cross-cultural comparisons

    Imputation strategies for missing binary outcomes in cluster randomized trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Attrition, which leads to missing data, is a common problem in cluster randomized trials (CRTs), where groups of patients rather than individuals are randomized. Standard multiple imputation (MI) strategies may not be appropriate to impute missing data from CRTs since they assume independent data. In this paper, under the assumption of missing completely at random and covariate dependent missing, we compared six MI strategies which account for the intra-cluster correlation for missing binary outcomes in CRTs with the standard imputation strategies and complete case analysis approach using a simulation study.</p> <p>Method</p> <p>We considered three within-cluster and three across-cluster MI strategies for missing binary outcomes in CRTs. The three within-cluster MI strategies are logistic regression method, propensity score method, and Markov chain Monte Carlo (MCMC) method, which apply standard MI strategies within each cluster. The three across-cluster MI strategies are propensity score method, random-effects (RE) logistic regression approach, and logistic regression with cluster as a fixed effect. Based on the community hypertension assessment trial (CHAT) which has complete data, we designed a simulation study to investigate the performance of above MI strategies.</p> <p>Results</p> <p>The estimated treatment effect and its 95% confidence interval (CI) from generalized estimating equations (GEE) model based on the CHAT complete dataset are 1.14 (0.76 1.70). When 30% of binary outcome are missing completely at random, a simulation study shows that the estimated treatment effects and the corresponding 95% CIs from GEE model are 1.15 (0.76 1.75) if complete case analysis is used, 1.12 (0.72 1.73) if within-cluster MCMC method is used, 1.21 (0.80 1.81) if across-cluster RE logistic regression is used, and 1.16 (0.82 1.64) if standard logistic regression which does not account for clustering is used.</p> <p>Conclusion</p> <p>When the percentage of missing data is low or intra-cluster correlation coefficient is small, different approaches for handling missing binary outcome data generate quite similar results. When the percentage of missing data is large, standard MI strategies, which do not take into account the intra-cluster correlation, underestimate the variance of the treatment effect. Within-cluster and across-cluster MI strategies (except for random-effects logistic regression MI strategy), which take the intra-cluster correlation into account, seem to be more appropriate to handle the missing outcome from CRTs. Under the same imputation strategy and percentage of missingness, the estimates of the treatment effect from GEE and RE logistic regression models are similar.</p

    You Mate, I Mate: Macaque Females Synchronize Sex not Cycles

    Get PDF
    Extended female sexuality in species living in multimale-multifemale groups appears to enhance benefits from multiple males. Mating with many males, however, requires a low female monopolizability, which is affected by the spatiotemporal distribution of receptive females. Ovarian cycle synchrony potentially promotes overlapping receptivity if fertile and receptive periods are tightly linked. In primates, however, mating is often decoupled from hormonal control, hence reducing the need for synchronizing ovarian events. Here, we test the alternative hypothesis that females behaviorally coordinate their receptivity while simultaneously investigating ovarian cycle synchrony in wild, seasonal Assamese macaques (Macaca assamensis), a promiscuous species with extremely extended female sexuality. Using fecal hormone analysis to assess ovarian activity we show that fertile phases are randomly distributed, and that dyadic spatial proximity does not affect their distribution. We present evidence for mating synchrony, i.e., the occurrence of the females' receptivity was significantly associated with the proportion of other females mating on a given day. Our results suggest social facilitation of mating synchrony, which explains (i) the high number of simultaneously receptive females, and (ii) the low male mating skew in this species. Active mating synchronization may serve to enhance the benefits of extended female sexuality, and may proximately explain its patterning and maintenance

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore