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Abstract  

Background: The study aimed to validate previously discovered plasma biomarkers 

associated with AD, using a design based on imaging measures as surrogate for disease 

severity and assess their prognostic value in predicting conversion to dementia.  

Methods: Three multicentre cohorts of cognitively healthy elderly, mild cognitive 

impairment (MCI) and AD participants with standardised clinical assessments and structural 

neuroimaging measures were used. Twenty six candidate proteins were quantified in 1148 

subjects using multiplex (xMAP) assays.    

Results: Sixteen proteins correlated with disease severity, and cognitive decline. Strongest 

associations were in the MCI group with a panel of ten proteins predicting progression to AD 

(accuracy 87%, sensitivity 85%, and specificity 88%). 

Conclusions: We have identified ten plasma proteins strongly associated with disease 

severity and disease progression. Such markers may be useful for patient selection for clinical 

trials and, assessment of patients with pre-disease subjective memory complaints. 

Keywords: Plasma, Mild cognitive impairment, pathology, Alzheimer’s disease, biomarker, 

prediction and magnetic resonance imaging. 
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Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative disorder of the aging 

population; usually affecting people over the age of 65 years and resulting in progressive 

cognitive and functional decline. Detecting AD at the earliest possible stage is vital to enable 

trials of disease modification agents and considerable efforts are being invested in the 

identification and replication of biomarkers for this purpose.  

Such biomarkers currently include measures of tau and amyloid beta (Aβ) in cerebrospinal 

fluid (CSF), brain atrophy using magnetic resonance imaging (MRI) and measures of Aβ 

pathological load using positron emission tomography (PET). All these approaches are 

promising, although molecular imaging is currently a costly procedure available in relatively 

few centres and lumbar puncture is moderately invasive. Furthermore repeated measures are 

problematical in both cases. 

Blood (plasma) on the other hand is a more accessible bio-fluid suitable for repeated 

sampling. This led many groups including ours to investigate the potential of a diagnostic 

signal in blood. Using a case-control study design with a gel based approach (2-DGE & LC-

MS/MS) two proteins (complement factor H (CFH) and alpha-2-macroglobulin) were 

observed as potential markers of AD [1], both of which were subsequently replicated by 

independent groups [2,3]. In the same study we observed changes in serum amyloid P (SAP), 

complement C4 (CC4), and ceruloplasmin, all of which have been implicated in AD 

pathogenesis [4,5,6]. However, case-control studies are problematical when there is a long 

prodromal disease phase. In such instances a large proportion of apparently normal controls 

already harbour the disease processes and hence may already have a peripheral biomarker 

disease signature. In order to overcome the limitations of case-control design, we searched 

for proteins associated with surrogates of disease severity (hippocampal atrophy and clinical 

progression), and identified Clusterin as a marker associated with both these surrogate 

measures [7]. Building on this 'endophenotype' discovery approach we subsequently found 

transthyretin (TTR) and Apolipoprotein A1 (ApoA1) to be associated with faster declining 

AD subjects and increased plasma Apolipoprotein E (ApoE) levels related to increased Aβ 

burden in the brain [8,9].   

These studies, and those from other groups, have identified a set of proteins that might act as 

biomarkers relevant to AD. However such findings require replication, in large studies, 

ideally using samples drawn from more than one cohort source and using a platform that 
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enables multiplexing. We therefore developed multiplex panels using our discovery proteins 

together with additional putative candidate biomarkers that have been implicated in AD and 

neurodegeneration (supplementary table S1).  

The aims of the current study were 1) to validate a set of blood-based biomarkers in a large 

multicentre cohort with specified a priori outcome variables of the disease endophenotype 

measure of atrophy on MRI and of clinical severity and, 2) to determine the accuracy of a 

multiplexed panel of disease relevant biomarkers in predicting conversion of mild cognitive 

impairment to dementia in a defined time period.   

Methods 

Subjects and clinical classification 

Plasma samples from AD, (mild cognitively impaired subjects (MCI) and elderly non-

demented controls were selected from three independent studies. AddNeuroMed (ANM) a 

multi-center European study,[10] Kings Health Partners-Dementia Case Register (KHP-

DCR) a UK clinic and population based study and Genetics AD Association (GenADA) a 

multisite case–control longitudinal study based in Canada [11]. The diagnosis of probable 

AD was made according to Diagnostic and Statistical Manual for Mental Diagnosis (DSM-

IV) and National Institute of Neurological, Communicative Disorders and Stroke- 

Alzheimer’s disease and Related Disorders Association (NINCDS-ADRDA) criteria. MCI 

was defined according to Petersen criteria [12]. Standardized clinical assessment included the 

Mini-Mental State Examination (MMSE) for cognition and for global levels of severity the 

Clinical Dementia Rating (CDR) (ANM and KHP-DCR only). The human biological samples 

were sourced ethically and their research use was in accord with the terms of the informed 

consents. 

In total we examined plasma samples from 1148 subjects - 476 with AD, 220 with MCI and 

452 elderly controls with no dementia (Table 1). The APOE SNPs rs429358 and rs7412 were 

genotyped using Taqman SNP genotyping assays (determined by allelic discrimination assays 

based on fluorogenic 5′ nuclease activity) and the allele inferred.   

Cognitive decline  

Cognitive decline, as determined by the slope of change in cognition, was calculated for a 

subset of AD subjects (n=342) who had a minimum of three separate MMSE assessments. 
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The rate of cognitive decline was calculated separately for ANM since it had a different 

following up interval (every 3 months over one year) in comparison to DCR and GenADA, 

which were followed up yearly over a period of at least three years. Linear mixed effect 

models were generated using the package ‘nlme’ in R. We estimated the rate of change using 

a multi-level linear model with random intercepts and random slopes adjusted for subject and 

centre level clustering. Covariates including age at baseline, gender, apolipoprotein (APOE) 

ε4 allele presence, and years of education were investigated for their effect on the rate of 

decline. Age at baseline and years of education had a significant effect on the rate (p-

value<0.05) and thus were included as fixed effects in the final model. The slope coefficient 

obtained from the final model for each sample was then used as a rate of cognitive change, 

defined as the change in MMSE score per year. 

Magnetic Resonance Imaging (MRI) 

High resolution sagittal 3D T1-weighted MPRAGE volume (voxel size 1.1 × 1.1 × 1.2 mm³) 

and axial proton density/T2-weighted fast spin echo images were acquired on 1.5T MRI 

scanners for 476 of the subjects (179 control, 123 MCI and 174 AD) as previously 

reported.[13]  The MPRAGE volume was acquired using a custom pulse sequence 

specifically designed for the ADNI study to ensure compatibility across scanners [14]. Full 

brain and skull coverage was required for all MR images according to previously published 

quality control criteria [13,15]. Image analysis was carried out using the Freesurfer image 

analysis pipeline (version 5.1.0) to produce regional cortical thickness and subcortical 

volumetric measures as previously described [16,17]. This segmentation approach has been 

previously used for analysis in imaging-proteomic studies [18] and AD biomarker discovery 

[16]. All volumetric measures from each subject were normalized by the subject’s 

intracranial volume while cortical thickness measures were used in their raw form [19]. 

Measures of hippocampal volume, entorhinal cortex volume and ventricular volume were 

chosen as MRI endophenotypes of AD. For evaluation of hippocampal atrophy the MRI data 

was stratified into high and low atrophy for the MCI group based on their median volumetric 

measures.  

Immunoassay – Luminex measurement 

All candidate proteins were measured using multiplex bead assays (Luminex xMAP) 

(Supplementary S1) incorporated in 7 MILLIPLEX MAP panels (Supplementary S2 and S3) 

run on the Luminex 200 instrument according to manufacturer’s instructions. 
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Data Pre-processing  

Prior to statistical analysis, we examined the performance of each assay using quality checks 

(QC) as outlined in the supplementary material. Median fluorescent intensity (MFI) was 

measured using xPONENT 3.1 (Luminex Corporation) and exported into Sigma plot (Systat 

Software; version 12) for estimation of protein concentrations using a 5-parameter logistic fit. 

Briefly, all analytes that passed QC checks based on the following 4 criteria (standard curve 

linearity, intra-assay coefficient of variation, inter-assay CV for reference sample and 

percentage of missing data; Supplementary material S3) were taken forward for further 

analysis.   

Statistical analysis 

Univariate analysis 

Univariate statistical analysis was performed in SPSS 20 (IBM). All raw MFI measures were 

log10 transformed to achieve normal distribution. Covariates including age, gender, plasma 

storage duration (days) and centre were investigated. We found that the majority of proteins 

were significantly affected by these covariates and therefore values were adjusted using a 

generalized linear regression model (GLM). All subsequent analysis was performed on the 

GLM adjusted data. Partial correlation (adjusting for APOE genotype) analysis was 

performed to examine associations with either structural MRI brain imaging or cognition 

assessments. Correlations were performed separately within diagnostic groups due to the 

discrete nature of the clinical scores across all groups. The proteins were also analysed 

individually for their association with disease phenotypes: disease status (AD vs. control) via 

ANCOVA (adjusting for APOE genotype). Multiple linear regressions were performed to test 

how combinations of proteins could predict hippocampal volume.  

Classification analysis 

Class prediction and attribute selection was performed using WEKA (University of Waikato). 

Naive Bayes Simple algorithm was used with default settings unless stated otherwise. The 

dataset was randomly split into 75% train and 25% test for the MCI-converter (MCIc) and 

MCI-non-converter (MCInc) groups. Attribute selection was performed using the Classifier 

Subset Evaluator with best first search method on the training data. Five iterations of attribute 

selection were performed ranked by times observed. Proteins seen >3 or more times were 
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taken forward as predictor variables (Table 3). Any class imbalance was overcome by 

applying the Synthetic Minority Oversampling Technique (SMOTE) in WEKA.    

Cut-off point analysis 

Untransformed protein concentrations on the full dataset (n=169 MCIc and n=51 MCInc) were 

binarised at different cut-off points using the upper and lower quartile ranges and the 

percentile rank.  A minimum of three cut-off concentrations were tested per protein. Logistic 

regression analysis was performed on individual cut-off concentrations and selected based on 

their accuracy of predicting conversion.      

Results  

Study Participants 

The demographic and clinical characteristics of participants from the three cohorts are 

presented in Table 1. The AD group were marginally, but significantly older than controls 

(AD: mean 77 yrs, Controls: 75 yrs, p=0.01). The frequency of the APOEε4 allele was higher 

in MCI and AD groups than controls.  

Plasma proteins and brain atrophy 

Of the 26 proteins measured only two proteins were found to be significantly different 

between AD and controls (ApoE: F=6.5, p<0.001; CFH: F=6.1, p<0.001). However, using 

partial correlation, and adjusting for APOE, we identified a number of plasma proteins that 

were significantly associated with atrophy using MRI measures of one or more of the brain 

regions; hippocampus, entorhinal cortex, ventricles and whole brain volume in the disease 

groups (tables 2a and b). Controlling for multiple testing, only Clusterin (MCI group: 

p<0.001) and ApoE (AD group: p=0.0014) remained significant.   

We then set out to identify proteins that collectively would predict disease progression, as 

represented by the surrogate of hippocampal atrophy, in a pre-disease group of MCI. Using 

multiple linear regression analysis, we identified 6 proteins (Clusterin, RANTES, NSE, TTR, 

VCAM-1, and SAP) that predicted 19.5% (p=0.006) of hippocampal volume in subjects with 

MCI. We observed a different combination of proteins associated with atrophy in the AD 

group. Using linear regression analysis, 7 proteins (APOA1, A1AT, ApoC3, BDNF, AB40, 

PAI-1, and NSE) in the AD group were able to predict 11.9% (p=0.039) of hippocampal 

volume.  
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In summary we found an association of Clusterin with greater atrophy, and a trend towards 

reduced RANTES, NSE and TTR levels in the MCI group. In the AD group A1AT, NSE, 

ApoC3, ApoA1, ApoE, and BDNF plasma levels were increased in subjects with increased 

atrophy.  

Plasma proteins clinical cognition and cognitive decline 

We examined the relationship between these proteins and disease severity as measured by 

cognition at the time of sampling and by rate of change in cognition. In the MCI group at the 

point of sampling, both ApoE and CRP negatively correlated with MMSE (ApoE: r=-0.15, 

p=0.001; CRP: r=-0.186, p=0.007). 

In the AD group at the point of sampling ApoE, CFH, NCAM, AB40, A1AcidG, and 

Clusterin were all negatively correlated with MMSE (ApoE: r=-0.150, p=0.001; CFH: r=-

0.104, p=0.026; NCAM: r=-0.114, p=0.014; AB40: r=-0.161, p=0.001; A1AcidG: r=-0.135, 

p=0.004; Clusterin: r=-0.135, p=0.004).  

Furthermore, we assessed the association of the proteins with longitudinal prospective 

MMSE change in the AD group. Three proteins, NCAM, sRAGE and ICAM, were 

significantly associated with the rate of change in cognition; NCAM and sRAGE were both 

negatively correlated (NCAM: r=-0.129, p=0.0018; sRAGE: r=-0.125, p=0.029) whereas 

ICAM was positively correlated (ICAM: r=0.108, p=0.047).  

Protein biomarkers to predict disease conversion: MCI to AD 

In summary we confirmed that a number of proteins, previously identified as putative 

markers of AD, correlated with disease severity, measured by MRI or severity of cognitive 

impairment not only in disease but in the pre-disease state of MCI. We therefore reasoned 

that if these proteins are reflecting pathological load that they may also be markers predictive 

of conversion from pre-disease states such as MCI to clinical dementia.  

To test this, we used a machine learning approach (Naive Bayes Simple) with feature 

selection on a training dataset (Figure 1) and then applied this to a test set. The average time 

of conversion of MCI to AD was approximately one year (375 days, SD=23 days). Ten 

proteins (TTR, Clusterin, Cystatin C, A1AcidG, ICAM1, CC4, PEDF, A1AT, RANTES, 

ApoC3) plus APOE genotype had the greatest predictive power (Table 3). The receiver 

operating curve characteristic (ROC) for the independent test set is shown in Figure 2a. The 
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ROC area under the curve (AUC) (Table 4a) of the test set was 0.78 (protein only) and 0.84 

(protein + APOE genotype). To test the accuracy, we investigated 3 different sensitivity cut-

off points at 30%, 50% and 85%. The optimal accuracy was observed at the 85% sensitivity 

with the test achieving an accuracy of 87% with a specificity of 88%. 

We then investigated whether combining structural MRI data with these 10 proteins observed 

in the MCI conversion data would improve classification accuracy. MRI brain measures for a 

subset of subjects were combined with the protein data and the Naive Bayes algorithm was 

applied. In this smaller dataset the proteins alone performed very well when tested at the 3 

different sensitivity cut-offs (Cut-off: accuracy; 30%: 83.3%, 50%: 80.6%, 85%: 69.4%). The 

addition of MRI data only marginally improved the accuracy at 2 cut-off points (Cut-off: 

accuracy 30%: 86%; 50%: 83%) but reduced it at the 85% sensitivity cut-off to 64% (Figure 

2b and Table 4b).  

Concentration cut-offs points for proteins predicting MCI to AD 

Individual protein cut-off values were derived for the 10 proteins identified by feature 

selection in the MCI conversion model. Values predictive of conversion to AD were; 

ApoC3< 105.5ug/ml, TTR< 222 ug/ml, A1AT< 9.5ug/ml, PEDF> 10.7ug/ml, CC4> 

78.5ug/ml, ICAM-1< 99.72ng/ml, RANTES< 33.8ng/ml, A1AcidG> 768.3ug/ml, Cystatin 

C< 3.21ug/ml, Clusterin> 402ug/ml. Logistic regression was applied to test the 10 protein 

cut-off concentrations and APOE genotype, the overall model accuracy was 94.9%, with a 

sensitivity 73.6%, and specificity of 94.9% when using the full dataset.   

Discussion  

Previous studies by our group using data-driven pan-proteomic approaches have identified a 

number of proteins as diagnostic [1] progression [7,20] and markers of disease severity [18]. 

The advent of high throughput multiplex platforms facilitates the replication of such findings 

and raises the potential of high throughput multiplexed markers for use in clinical practice 

and in clinical trials [21,22,23]. In this study we have used a multiplex antibody capture 

platform to determine if our putative biomarkers are associated with early disease stages and 

might have value as prognostic markers. Using MRI as a surrogate of disease pathology we 

identified a number of proteins that were associated with atrophy either early in the disease 

process (MCI) or in established dementia.    
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This approach of using MRI as a proxy for in vivo pathology has previously been shown to be 

useful in biomarker discovery, including in our study identifying Clusterin as a putative 

marker of disease [7]. In the current study we identified RANTES, NSE and transthyretin, in 

addition to Clusterin, to be associated with cortical atrophy in the MCI group, with Clusterin 

showing the strongest correlation with all brain regions assessed. The other proteins have 

previously been implicated in AD. RANTES, also known as chemokine ligand 5 (CCL5), is a 

protein known to have an active role in recruiting leukocytes into inflammatory sites. We find 

a negative association between RANTES and ventricular volume, suggesting a decreased 

level with increased disease related pathology; the opposite to previous reports in 

neurodegeneration [24,25,26]. One possible explanation might be that since we observe 

RANTES association with atrophy only in MCI and not in AD, perhaps a decrease early in 

disease process is followed by an increase. Similar findings have been previously reported for 

other proteins [27] and we also observe a similar relationship with neuron-specific enolase 

(NSE), the second protein we observe in association with brain atrophy. This protein is 

thought to be an indicator of acute neuronal damage [28,29] and has been associated with AD 

in some but not all previous studies [30,31]. We find a positive association between NSE and 

volume of hippocampus and whole brain in MCI subjects, but in the AD group we find a 

positive association instead with ventricular volume. This inverse relationship with atrophy in 

pre-disease and then positive correlation with atrophy in disease suggests to us, that like 

RANTES, NSE might be decreased in early disease stages (i.e. MCI) with a rebound 

elevation in established AD.  

In established AD we observe a different set of proteins associated with disease severity as 

measured by atrophy on MRI, in line with this concept of disease phase specific biomarkers. 

A number of these belong to the group of apolipoproteins (ApoE, ApoC3 and ApoA1). We 

found these proteins were negatively associated with hippocampal, entorhinal cortical and 

whole brain volumes. The roles of apolipoproteins in neurodegenerative disorders have been 

studied extensively since the discovery that APOE was a major susceptibility gene for AD 

[32,33]. In the peripheral system, ApoE serves in the transport of triglycerides, phospholipids 

and cholesterol into cells [34]. The literature on ApoE is conflicting with some groups 

reporting lower ApoE in AD [35,36], with others showing increased levels [37,38]. ApoE 

plasma measurements derived from this study have been recently published and are in 

agreement with the findings from the North American Alzheimer's Disease Neuroimaging 

Initiative, which reports an APOE genotype effect [39].  
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Our present findings suggest that we have identified a panel of plasma biomarkers, associated 

with neuroimaging measures of disease, which may serve as readily accessible markers of 

early disease severity. Moreover, we identify a set of ten protein biomarkers that can 

prospectively predict disease conversion from MCI to AD within a year of blood sampling. 

These results are supported by other evidence that plasma proteins can have a role in early 

disease detection, with inflammatory proteins in particular being identified as possible 

predictors of conversion from MCI [23,40]. It is important to note that when attempting to 

compare such biomarker studies, the lack of standardised reagents, particularly antibodies 

may result in different outcomes reflecting technical differences between analytical platforms 

more than disease biology. Therefore our ability to replicate these proteins using an 

orthoganol approach (mass spectrometry in discovery, multiplexed immune capture in 

replication), makes these findings particularly powerful and robust. Moreover, combining 

MRI with protein measures did not improve predictive power in contrast to previous studies 

where CSF marker performance was improved in combination with MRI [41].  

Although this study is built on findings from previous discovery-led and replicated findings, 

further replication will be needed. Ideally such replication should be in large, longitudinal, 

population based cohorts. Such as study would be able to address potential confounds of the 

data reported in this study including site-specific effects and representativeness of the 

cohorts. Further studies will also be needed to address specificity. The markers we have 

identified are often altered in other disease areas – inflammation, cardiovascular, respiratory, 

dental and others – and it will be important to distinguish the relative overlap and 

confounding by these diseases. However, although the protein participants in the panel we 

have identified are often altered in other disease states, these diseases are all different and 

therefore the panel itself may show specificity even if the participants do not. This remains to 

be determined. It also remains to be seen whether the panel we have identified is specific to 

AD or shows biomarker utility in relation to other dementia syndromes. Although we used an 

assessment protocol that previously we have shown is highly accurate in distinguishing AD 

from other dementias based on post-mortem confirmation, it will be interesting in due course 

to correlate the behavior of our panel to specific markers of dementia pathology such as 

biochemical or imaging measures of Abeta and tau.  
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In summary, using a multiplexing approach we have validated a plasma protein panel as a 

marker reflecting disease severity and for predicting disease progression within three large 

multicentre cohorts. Such a marker set may have considerable value in triaging patients with 

early memory disorders, to other more invasive approaches such as molecular markers in 

CSF and PET imaging, in clinical trials and possibly in clinical practice. 

 

Acknowledgments 

This study was supported by the Medical Research Council (MRC) UK, Alzheimer’s 

Research UK (ARUK), The National Institute for Health Research (NIHR) Biomedical 

Research Centre, Biomedical Research Unit for Dementia and the EU FP6 programme. 

We are grateful to all the participants from AddNeuroMed, GenADA and KHP-DCR studies. 

We would like to thank Megan Pritchard and the research team for the IoP sample collection 

and assessments. We would also like to thank Shaikh Masood and Lawrence Rentoul for their 

technical support.   

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

References 

1. Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, et al. (2006) Proteome-based plasma 

biomarkers for Alzheimer's disease. Brain 129: 3042-3050. 

2. Cutler P, Akuffo EL, Bodnar WM, Briggs DM, Davis JB, et al. (2008) Proteomic identification and 

early validation of complement 1 inhibitor and pigment epithelium-derived factor: Two novel 

biomarkers of Alzheimer's disease in human plasma. Proteomics Clin Appl 2: 467-477. 

3. Akuffo EL, Davis JB, Fox SM, Gloger IS, Hosford D, et al. (2008) The discovery and early 

validation of novel plasma biomarkers in mild-to-moderate Alzheimer's disease patients 

responding to treatment with rosiglitazone. Biomarkers 13: 618-636. 

4. Kimura M, Asada T, Uno M, Machida N, Kasuya K, et al. (1999) Assessment of cerebrospinal 

fluid levels of serum amyloid P component in patients with Alzheimer's disease. Neurosci 

Lett 273: 137-139. 

5. Kessler H, Pajonk FG, Meisser P, Schneider-Axmann T, Hoffmann KH, et al. (2006) Cerebrospinal 

fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients 

with Alzheimer's disease. J Neural Transm 113: 1763-1769. 

6. Mulder SD, Hack CE, van der Flier WM, Scheltens P, Blankenstein MA, et al. (2010) Evaluation 

of intrathecal serum amyloid P (SAP) and C-reactive protein (CRP) synthesis in Alzheimer's 

disease with the use of index values. J Alzheimers Dis 22: 1073-1079. 

7. Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, et al. (2010) Association of 

plasma clusterin concentration with severity, pathology, and progression in Alzheimer 

disease. Arch Gen Psychiatry 67: 739-748. 

8. Velayudhan L, Killick R, Hye A, Kinsey A, Guntert A, et al. (2012) Plasma transthyretin as a 

candidate marker for Alzheimer's disease. J Alzheimers Dis 28: 369-375. 

9. Thambisetty M, Tripaldi R, Riddoch-Contreras J, Hye A, An Y, et al. (2010) Proteome-based 

plasma markers of brain amyloid-beta deposition in non-demented older individuals. J 

Alzheimers Dis 22: 1099-1109. 

10. Lovestone S, Francis P, Kloszewska I, Mecocci P, Simmons A, et al. (2009) AddNeuroMed--the 

European collaboration for the discovery of novel biomarkers for Alzheimer's disease. Ann N 

Y Acad Sci 1180: 36-46. 

11. Li H, Wetten S, Li L, St Jean PL, Upmanyu R, et al. (2008) Candidate single-nucleotide 

polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol 65: 

45-53. 

12. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, et al. (1999) Mild cognitive 

impairment: clinical characterization and outcome. Arch Neurol 56: 303-308. 

13. Simmons A, Westman E, Muehlboeck S, Mecocci P, Vellas B, et al. (2009) MRI measures of 

Alzheimer's disease and the AddNeuroMed study. Ann N Y Acad Sci 1180: 47-55. 

14. Jack CR, Jr., Bernstein MA, Fox NC, Thompson P, Alexander G, et al. (2008) The Alzheimer's 

Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27: 685-691. 

15. Simmons A, Westman E, Muehlboeck S, Mecocci P, Vellas B, et al. (2011) The AddNeuroMed 

framework for multi-centre MRI assessment of Alzheimer's disease: experience from the first 

24 months. Int J Geriatr Psychiatry 26: 75-82. 

16. Westman E, Simmons A, Muehlboeck JS, Mecocci P, Vellas B, et al. (2011) AddNeuroMed and 

ADNI: similar patterns of Alzheimer's atrophy and automated MRI classification accuracy in 

Europe and North America. Neuroimage 58: 818-828. 

17. Westman E, Simmons A, Zhang Y, Muehlboeck JS, Tunnard C, et al. (2011) Multivariate analysis 

of MRI data for Alzheimer's disease, mild cognitive impairment and healthy controls. 

Neuroimage 54: 1178-1187. 

18. Thambisetty M, Simmons A, Hye A, Campbell J, Westman E, et al. (2011) Plasma biomarkers of 

brain atrophy in Alzheimer's disease. PLoS One 6: e28527. 

19. Westman E, Aguilar C, Muehlboeck JS, Simmons A (2013) Regional magnetic resonance imaging 

measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment. 

Brain Topogr 26: 9-23. 



14 
 

20. Guntert A, Campbell J, Saleem M, O'Brien DP, Thompson AJ, et al. (2010) Plasma gelsolin is 

decreased and correlates with rate of decline in Alzheimer's disease. J Alzheimers Dis 21: 

585-596. 

21. Hu WT, Holtzman DM, Fagan AM, Shaw LM, Perrin R, et al. (2012) Plasma multianalyte 

profiling in mild cognitive impairment and Alzheimer disease. Neurology 79: 897-905. 

22. O'Bryant SE, Xiao G, Barber R, Huebinger R, Wilhelmsen K, et al. (2011) A blood-based 

screening tool for Alzheimer's disease that spans serum and plasma: findings from TARC and 

ADNI. PLoS One 6: e28092. 

23. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, et al. (2007) Classification and 

prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat Med 13: 

1359-1362. 

24. Gangemi S, Basile G, Merendino RA, Epifanio A, Di Pasquale G, et al. (2003) Effect of levodopa 

on interleukin-15 and RANTES circulating levels in patients affected by Parkinson's disease. 

Mediators Inflamm 12: 251-253. 

25. Grzybicki D, Moore SA, Schelper R, Glabinski AR, Ransohoff RM, et al. (1998) Expression of 

monocyte chemoattractant protein (MCP-1) and nitric oxide synthase-2 following cerebral 

trauma. Acta Neuropathol 95: 98-103. 

26. Tripathy D, Thirumangalakudi L, Grammas P (2010) RANTES upregulation in the Alzheimer's 

disease brain: a possible neuroprotective role. Neurobiol Aging 31: 8-16. 

27. Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, et al. (2011) Identification and 

validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer's disease. 

PLoS One 6: e16032. 

28. DeGiorgio CM, Gott PS, Rabinowicz AL, Heck CN, Smith TD, et al. (1996) Neuron-specific 

enolase, a marker of acute neuronal injury, is increased in complex partial status epilepticus. 

Epilepsia 37: 606-609. 

29. Hatfield RH, McKernan RM (1992) CSF neuron-specific enolase as a quantitative marker of 

neuronal damage in a rat stroke model. Brain Res 577: 249-252. 

30. Blennow K, Wallin A, Ekman R (1994) Neuron specific enolase in cerebrospinal fluid: a 

biochemical marker for neuronal degeneration in dementia disorders? J Neural Transm Park 

Dis Dement Sect 8: 183-191. 

31. Chaves ML, Camozzato AL, Ferreira ED, Piazenski I, Kochhann R, et al. (2010) Serum levels of 

S100B and NSE proteins in Alzheimer's disease patients. J Neuroinflammation 7: 6. 

32. Lewis TL, Cao D, Lu H, Mans RA, Su YR, et al. (2010) Overexpression of human apolipoprotein 

A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid 

angiopathy in a mouse model of Alzheimer disease. J Biol Chem 285: 36958-36968. 

33. Takechi R, Galloway S, Pallebage-Gamarallage MM, Wellington CL, Johnsen RD, et al. (2010) 

Differential effects of dietary fatty acids on the cerebral distribution of plasma-derived apo B 

lipoproteins with amyloid-beta. Br J Nutr 103: 652-662. 

34. Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, et al. (2002) Apolipoprotein E 

polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 155: 487-495. 

35. Gupta VB, Laws SM, Villemagne VL, Ames D, Bush AI, et al. (2011) Plasma apolipoprotein E 

and Alzheimer disease risk: the AIBL study of aging. Neurology 76: 1091-1098. 

36. Siest G, Bertrand P, Qin B, Herbeth B, Serot JM, et al. (2000) Apolipoprotein E polymorphism 

and serum concentration in Alzheimer's disease in nine European centres: the ApoEurope 

study. ApoEurope group. Clin Chem Lab Med 38: 721-730. 

37. Darreh-Shori T, Forsberg A, Modiri N, Andreasen N, Blennow K, et al. (2011) Differential levels 

of apolipoprotein E and butyrylcholinesterase show strong association with pathological signs 

of Alzheimer's disease in the brain in vivo. Neurobiol Aging 32: 2320 e2315-2332. 

38. Darreh-Shori T, Modiri N, Blennow K, Baza S, Kamil C, et al. (2011) The apolipoprotein E 

epsilon4 allele plays pathological roles in AD through high protein expression and interaction 

with butyrylcholinesterase. Neurobiol Aging 32: 1236-1248. 

39. Kiddle SJ, Thambisetty M, Simmons A, Riddoch-Contreras J, Hye A, et al. (2012) Plasma based 

markers of [11C] PiB-PET brain amyloid burden. PLoS One 7: e44260. 



15 
 

40. Furney SJ, Kronenberg D, Simmons A, Guntert A, Dobson RJ, et al. (2011) Combinatorial 

markers of mild cognitive impairment conversion to Alzheimer's disease--cytokines and MRI 

measures together predict disease progression. J Alzheimers Dis 26 Suppl 3: 395-405. 

41. Brys M, Glodzik L, Mosconi L, Switalski R, De Santi S, et al. (2009) Magnetic resonance 

imaging improves cerebrospinal fluid biomarkers in the early detection of Alzheimer's 

disease. J Alzheimers Dis 16: 351-362. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

Table 1. Subject demographics: Abbreviations: AD, Alzheimer’s disease; APOE, Apolipoprotein E; 

CDR, Clinical dementia rating; GDS, Global Deterioration Scale; MCI, mild cognitive impairment; 

MMSE, mini mental state examination. Mean (±S.D, Range), ANOVA was performed and if 

significant a Tukey’s post-hoc comparison was carried out. * Sig. Across all 3 groups, # Control 

compared to AD.   

Table 2. Proteins identified as significantly associated with structural brain MRI measures in the (a) 

MCI group and (b) AD group. * Pearson’s correlation coefficient; n/a = no significant association 

observed     

Figure 1. Feature selection workflow used to select the best attributes for MCIc classification. 

Table 3. Proteins observed in the feature selection. Ranked according to the number of times a protein 

was observed in the feature selection. Proteins highlighted in bold were taken forward as the 

predictors for MCI conversion.  

Figure 2. Receiver operating characteristic (ROC) curves obtained for the test set for (a) three models 

(Proteins only, Proteins + APOE and APOE only) from the full MCIc and MCInc dataset and (b) for 

the test set for three models (Proteins only, Proteins + APOE +MRI and MRI only) in the subset with 

protein plus MRI imaging data.    

Table 4. Characteristics of the ROC curve for (a) the full dataset without MRI and (b) ROC curve 

characteristics for the subset with MRI imaging data. Three different sensitivity cut-off points were 

investigated. Sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive 

value (NPV) Accuracy (ACC) and ROC area under curve (AUC) for the protein and APOE 

classifiers. 
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Table 1 

 Control MCI AD Sig. 

  MCI-NC MCI-C   

N 452 169 51 476  

Age (yrs) 75.6 (±6.3, 

53-93) 

76.3 (±5.7, 

65-90) 

76.2 (±6.9, 

56-89) 

77.0 (±6.4, 

58-96) 

P=0.012# 

Sex (%, Female) 55.6% 50.1% 49.1% 49.4% P=0.277 

APOE genotype (%, 

e4+) 

28% 35% 55% 59% P<0.001# 

MMSE 29.0 (±1.2, 

22-30) 

26.9 (±2.9, 

0-30) 

26.3 (±2.1, 

18-30) 

20·8 (±5·4, 

0-30) 

P<0·001* 

CDR (Sum of 

Boxes) 

0·18 (±0·4, 

0-3) 

1·82 (±0·9, 

0-4·5) 

2·41 (±0·9, 

0·5-5) 

4·04 (±3·2, 

0-20) 

P<0·001* 
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Table 2 

(a) 

MCI group 

(b) 

AD group 

MRI brain region Protein 
Correlation 

coefficient* 

Significance 

(2-tailed) 
df MRI brain region Protein 

Correlation 

coefficient* 

Significance 

(2-tailed) 
df 

Ventricular volume 

Clusterin 

RANTES 

0.23 

-0.19 

0.01 

0.03 

115 

116 Ventricular volume 

A1AT 

NSE 

0.24 

0.16 

0.01 

0.03 

119 

169 

Mean hippocampal 

volume 

Clusterin 

NSE 

-0.38 

0.22 

0.00 

0.02 

115 

116 Mean hippocampal 

volume 

BDNF 

ApoC3 

ApoA1 

ApoE 

-0.21 

-0.18 

-0.15 

-0.15 

0.02 

0.02 

0.04 

0.05 

123 

168 

169 

169 

Right Entorhinal thickness Clusterin -0.22 0.02 115 Right Entorhinal thickness n/a n/a n/a n/a 

Left Entorhinal thickness Prealbumin -0.20 0.04 109 Left Entorhinal thickness n/a n/a n/a n/a 

Mean Entorhinal 

volume n/a n/a n/a n/a 

Mean Entorhinal 

volume 

ApoC3 

ApoE 

-0.20 

-0.18 

0.01 

0.02 

168 

169 

Mean Entorhinal 

Thickness n/a n/a n/a n/a 

Mean Entorhinal 

Thickness 

ApoC3 

ApoA1 

ApoE 

Prealbumin 

-0.22 

-0.21 

-0.2 

-0.15 

0.01 

0.01 

0.01 

0.05 

168 

169 

169 

158 

Whole Brain Volume 

Clusterin 

NSE 

RANTES 

-0.25 

0.21 

0.19 

0.01 

0.02 

0.04 

118 

119 

119 Whole Brain Volume 

ApoE 

ApoA1 

AB40 

-0.19 

-0.19 

0.17 

0.02 

0.02 

0.04 

145 

145 

141 
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Total samples 
N=220

(MCI-C=51; 
MCI-NC=169)

WEKA: attribute Selection

Attribute evaluator: Classifier subset evaluator, 
Classifier: Naive Bayes Simple 
Search Method: Best first
Attribute evaluation method: Cross validation 10x 

Optimised feature selection 
performed in the training.

5X iterations performed 

Train 75% 25% Test

Optimised attributes selected
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Table 3 

Protein No. Times 

observed in feature 

selection 

Protein No. Times observed in 

feature selection 

Transthyretin 5 CathepsinD 1 

Clusterin 4 ApoE 1 

Cystatin C 4 SAP 0 

A1AcidG 4 Ceruloplasmin 0 

ICAM1 4 NCAM 0 

CC4 4 NSE 0 

PEDF 4 VCAM1 0 

A1AT 4 A2M 0 

APOE genotype 3 B2M 0 

RANTES 3 BDNF 0 

ApoC3 3 CFH 0 

PAI-1 2 ApoA1 0 

CRP 2 Ab40 0 
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Table 4 

 

 

 

 

 

 

(a) ROC characteristics without MRI (b) ROC characteristics with MRI 

Classification 

model 

Sensitivity 

cut-off % 

SN 

% 

SP % PPV % NPV % ACC % ROC 

(AUC) 

Classification 

model 

Sensitivity 

cut-off % 

SN 

% 

SP % PPV 

% 

NPV 

% 

ACC 

% 

ROC 

(AUC) 

Protein + APOE 30 30.8 92.9 57.1 81.3 87.2 0.84 Protein + 

APOE + MRI 

30 33.3 96.7 66.7 87.9 86.1 0.75 

Protein only 30 30.8 92.9 57.1 81.3 87.2 0.78 Protein only 30 33.3 93.3 50.0 87.5 83.3 0.82 

Protein + APOE 50 53.9 88.1 58.3 86.1 80.0 0.84 MRI only 30 33.3 80.0 25.0 85.7 72.2 0.54 

Protein only 50 43.8 84.6 53.9 78.6 72.7 0.78 Protein + 

APOE + MRI 

50 50.0 90.0 50.0 90.0 83.3 0.75 

Protein + APOE 85 84.6 88.1 68.8 94.9 87.2 0.84 Protein only 50 50.0 86.7 42.9 89.7 80.6 0.82 

Protein only 85 84.6 71.4 47.8 93.8 74.5 0.78 MRI only 50 50.0 63.3 21.3 86.4 61.1 0.54 

        Protein + 

APOE + MRI 

85 83.3 60.0 29.4 94.7 63.9 0.75 

        Protein only 85 83.3 66.7 33.3 95.2 69.4 0.82 

        MRI only 85 83.3 13.3 16.1 80.0 25.0 0.54 


