14 research outputs found

    The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor

    Get PDF
    Cuttlebone, the sophisticated buoyancy device of cuttlefish, is made of extensive superposed chambers that have a complex internal arrangement of calcified pillars and organic membranes. It has not been clear how this structure is assembled. We find that the membranes result from a myriad of minor membranes initially filling the whole chamber, made of nanofibres evenly oriented within each membrane and slightly rotated with respect to those of adjacent membranes, producing a helical arrangement. We propose that the organism secretes a chitin-protein complex, which self-organizes layer-by-layer as a cholesteric liquid crystal, whereas the pillars are made by viscous fingering. The liquid crystallization mechanism permits us to homologize the elements of the cuttlebone with those of other coleoids and with the nacreous septa and the shells of nautiloids. These results challenge our view of this ultra-light natural material possessing desirable mechanical, structural and biological properties, suggesting that two self-organizing physical principles suffice to understand its formation.Spanish Ministerio de Ciencia e Innovacion [CGL2010-20748-CO2-01, CGL2013-48247-P, FIS2013-48444-C2-2-P]; Andalusian Consejeria de Innovacion Ciencia y Tecnologia [RNM6433]; (Sepiatech, PROMAR program) of the Portuguese Ministerio da Agricultura e do Mar, Portugal [31.03.05.FEP.002]; Junta de Andalucia [RNM363]; FP7 COST Action of the European Community. [TD0903]info:eu-repo/semantics/publishedVersio

    Biological strategy for the fabrication of highly ordered aragonite helices: The microstructure of the cavolinioidean gastropods

    Get PDF
    The Cavolinioidea are planktonic gastropods which construct their shells with the so-called aragonitic helical fibrous microstructure, consisting of a highly ordered arrangement of helically coiled interlocking continuous crystalline aragonite fibres. Our study reveals that, despite the high and continuous degree of interlocking between fibres, every fibre has a differentiated organic-rich thin external band, which is never invaded by neighbouring fibres. In this way, fibres avoid extinction. These intra-fibre organic-rich bands appear on the growth surface of the shell as minuscule elevations, which have to be secreted differentially by the outer mantle cells. We propose that, as the shell thickens during mineralization, fibre secretion proceeds by a mechanism of contact recognition and displacement of the tips along circular trajectories by the cells of the outer mantle surface. Given the sizes of the tips, this mechanism has to operate at the subcellular level. Accordingly, the fabrication of the helical microstructure is under strict biological control. This mechanism of fibre-by-fibre fabrication by the mantle cells is unlike that any other shell microstructure.Funding was provided by Research Projects CGL2013-48247-P of the Spanish Ministerio de EconomĂ­a y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (FEDER), and P10-RNM6433 of the Andalusian ConsejerĂ­a de EconomĂ­a, InvestigaciĂłn, Ciencia y Empleo, of the Junta de AndalucĂ­a, and by the Research Group RNM363 (latter Institution)

    Charting Evolution’s Trajectory: Using Molluscan Eye Diversity to Understand Parallel and Convergent Evolution

    Get PDF
    For over 100 years, molluscan eyes have been used as an example of convergent evolution and, more recently, as a textbook example of stepwise evolution of a complex lens eye via natural selection. Yet, little is known about the underlying mechanisms that create the eye and generate different morphologies. Assessing molluscan eye diversity and understanding how this diversity came about will be important to developing meaningful interpretations of evolutionary processes. This paper provides an introduction to the myriad of eye types found in molluscs, focusing on some of the more unusual structures. We discuss how molluscan eyes can be applied to the study of evolution by examining patterns of convergent and parallel evolution and provide several examples, including the putative convergence of the camera-type eyes of cephalopods and vertebrates

    A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale

    Get PDF
    Author Posting. © Nature Publishing Group, 2006. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 442 (2006): 159-163, doi:10.1038/nature04894.Odontogriphus omalus was originally described as a problematic non-biomineralized lophophorate organism. Here we reinterpret Odontogriphus based on 189 new specimens including numerous exceptionally well-preserved individuals from the Burgess Shale collections of the Royal Ontario Museum. This additional material provides compelling evidence that the feeding apparatus in Odontogriphus is a radula of molluscan architecture comprising two primary bipartite tooth rows attached to a radular membrane and showing replacement by posterior addition. Further characters supporting molluscan affinity include a broad foot bordered by numerous ctenidia located in a mantle groove and a stiffened cuticular dorsum. Odontogriphus has a radula similar to Wiwaxia corrugata but lacks a scleritome. We interpret these animals to be members of an early stem-group mollusc lineage that likely originated in the Neoproterozoic Ediacaran Period, providing support for the retention of a biomat-based grazing community from the late Precambrian until at least the Middle Cambrian.Our research was in part supported by a Post-Doctoral Natural Sciences and Engineering Research Council of Canada grant (to JBC-2005) and by a Swedish Research Council grant (to CS)

    The two phases of the Cambrian Explosion

    Get PDF
    Abstract The dynamics of how metazoan phyla appeared and evolved – known as the Cambrian Explosion – remains elusive. We present a quantitative analysis of the temporal distribution (based on occurrence data of fossil species sampled in each time interval) of lophotrochozoan skeletal species (n = 430) from the terminal Ediacaran to Cambrian Stage 5 (~545 – ~505 Million years ago (Ma)) of the Siberian Platform, Russia. We use morphological traits to distinguish between stem and crown groups. Possible skeletal stem group lophophorates, brachiopods, and molluscs (n = 354) appear in the terminal Ediacaran (~542 Ma) and diversify during the early Cambrian Terreneuvian and again in Stage 2, but were devastated during the early Cambrian Stage 4 Sinsk extinction event (~513 Ma) never to recover previous diversity. Inferred crown group brachiopod and mollusc species (n = 76) do not appear until the Fortunian, ~537 Ma, radiate in the early Cambrian Stage 3 (~522 Ma), and with minimal loss of diversity at the Sinsk Event, continued to diversify into the Ordovician. The Sinsk Event also removed other probable stem groups, such as archaeocyath sponges. Notably, this diversification starts before, and extends across the Ediacaran/Cambrian boundary and the Basal Cambrian Carbon Isotope Excursion (BACE) interval (~541 to ~540 Ma), ascribed to a possible global perturbation of the carbon cycle. We therefore propose two phases of the Cambrian Explosion separated by the Sinsk extinction event, the first dominated by stem groups of phyla from the late Ediacaran, ~542 Ma, to early Cambrian stage 4, ~513 Ma, and the second marked by radiating bilaterian crown group species of phyla from ~513 Ma and extending to the Ordovician Radiation

    A Silurian armoured aplacophoran and implications for molluscan phylogeny

    No full text
    The Mollusca is one of the most diverse, important and well-studied invertebrate phyla; however, relationships among major molluscan taxa have long been a subject of controversy. In particular, the position of the shell-less vermiform Aplacophora and its relationship to the better-known Polyplacophora (chitons) have been problematic: Aplacophora has been treated as a paraphyletic or monophyletic group at the base of the Mollusca, proximate to other derived clades such as Cephalopoda, or as sister group to the Polyplacophora, forming the clade Aculifera. Resolution of this debate is required to allow the evolutionary origins of Mollusca to be reconstructed with confidence. Recent fossil finds support the Aculifera hypothesis, demonstrating that the Palaeozoic-era palaeoloricate 'chitons' included taxa combining certain polyplacophoran and aplacophoran characteristics. However, fossils combining an unambiguously aplacophoran-like body with chiton-like valves have remained elusive. Here we describe such a fossil, Kulindroplax perissokomos gen. et sp. nov., from the Herefordshire LagerstÀtte (about 425 million years bp), a Silurian deposit preserving a marine biota in unusual three-dimensional detail. The specimen is reconstructed three-dimensionally through physical-optical tomography. Phylogenetic analysis indicates that this and many other palaeoloricate chitons are crown-group aplacophorans
    corecore