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Summary: 
 
Odontogriphus omalus was originally described as a problematic non-biomineralized 

lophophorate organism. Here we reinterpret Odontogriphus based on 189 new specimens 

including numerous exceptionally well-preserved individuals from the Burgess Shale 

collections of the Royal Ontario Museum. This additional material provides compelling 

evidence that the feeding apparatus in Odontogriphus is a radula of molluscan 

architecture comprising two primary bipartite tooth rows attached to a radular membrane 

and showing replacement by posterior addition. Further characters supporting molluscan 

affinity include a broad foot bordered by numerous ctenidia located in a mantle groove 

and a stiffened cuticular dorsum. Odontogriphus has a radula similar to Wiwaxia 

corrugata but lacks a scleritome. We interpret these animals to be members of an early 

stem-group mollusc lineage that likely originated in the Neoproterozoic Ediacaran Period, 

providing support for the retention of a biomat-based grazing community from the late 

Precambrian until at least the Middle Cambrian.  
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Burgess Shale-type deposits in Lower and Middle Cambrian strata yield a number 

of “problematic” organisms that can potentially reveal key steps in the origin, 

relationship and evolution of phyla1. Odontogriphus omalus is one of the most enigmatic 

fossils from the Middle Cambrian Burgess Shale2. This animal, known originally from a 

single, incomplete and poorly preserved specimen, was described as a dorso-ventrally 

flattened and possibly annulated organism2. A conspicuous U-shaped feeding apparatus 

flanked by toothlike structures was thought to be reminiscent of the lophophore of 

brachiopods, phoronids and ectoprocts, with a possible connection with some Cambrian 

conodonts2. The view that Odontogriphus could have played a key role in chordate 

evolution3 has remained marginal especially following the subsequent discovery of 

conodont animals bearing no resemblance to Odontogriphus4. Hypothetical tentacles 

originally reconstructed around the toothlike structures are themselves dubious, and 

cannot be used to refer Odontogriphus to a known lophophorate group4. The suggestions 

that Odontogriphus could be related to the Early Cambrian problematic fossil 

Vetustovermis or to the poorly known Late Permian Bowengriphus5 are very unlikely 

based on the abundant and exceptionally well preserved new material presented in this 

study. Odontogriphus shares a virtually identical radula with the noncalcified scleritome-

bearing animal Wiwaxia6 supporting the idea that both organisms are stem-group 

molluscs, contrary to views that Wiwaxia was a polychaete7 or a stem-group polychaete8 

(but see9). Our study provides new insights into the origin and early evolution of the 

Mollusca, which together with the discovery of fossils showing probable molluscan 

affinities from the latest Precambrian (Kimberella10) and Early Cambrian strata 
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(Halkieria8, 11), confirms that the origin of eutrochozoans is deeply rooted and predates 

the Cambrian explosion12.  

Stem-group Mollusca  

Odontogriphus omalus Conway Morris, 1976 

Material and Locality: Royal Ontario Museum -188 specimens from the Greater 

Phyllopod Bed on Fossil Ridge (including one from talus) and one talus specimen from 

Mount Stephen (S7), Yoho National Park, British Columbia, Canada. 

Holotype: USNM 196169, (35K), National Museum of Natural History, Washington, 

D.C. 

Horizon: Middle Cambrian Burgess Shale Formation.  

Preservation: Specimens appear as black reflective films on a dark mudstone matrix and 

often co-occur with large sheets of the cyanobacterium Morania (Figs. 1a, b; 2). The 

radula retains some original three-dimensionality, but its original composition has not 

been preserved (Energy Dispersive X-ray Spectrometer (EDS) analyses show no 

difference between the radula and matrix). Evidence of decay is rare and most specimens 

are preserved parallel to bedding planes, implying that the body was flattened dorso-

ventrally and that animals were buried very rapidly with limited or no transport (see13). 

Odontogriphus represents less than 0.5% of 50,900 individuals in the Greater Phyllopod 

Bed community14. 

Revised diagnosis: Bilaterally symmetrical oval body, parallel-sided, compressed dorso-

ventrally. Anterior and posterior semi-circular in outline and of similar size. Mouth 

ventral with two primary bipartite tooth rows attached to a radular membrane and 

showing replacement by posterior addition. Gut straight with a large stomach, narrow 
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intestine and a sub-terminal anus. Simple ctenidia present in a groove running laterally 

and posteriorly around a muscular foot. With non-biomineralized, stiffened cuticular 

mantle dorsum lacking sclerites.  

Description (Supplementary Figure I): Specimens range from 3.3 to 125 mm in length 

(mean=47.5, SD=29, N=89) and from 1.5 to 43 mm in width (mean=18.5, SD=10.5, 

N=123). Length-width ratio identical in juveniles and adults (L=2.74W, rs=0.97, 

p<0.0001, N=78) demonstrating isometric growth. Symmetry of the body outline is 

maintained in all complete specimens, even those in which internal features have been 

preserved asymmetrically (Fig. 1h), implying that the dorsal body coverage is relatively 

stiff. The radula is located at about 15% of the total body length from the anterior margin 

on the mid-longitudinal axis (Fig. 1a, b, g, h, j, k). It typically consists of two rows of 

teeth preserved at different angles (Supplementary Figure II) and is bipartite (= distichous) 

with paired mirror teeth connected axially (1:0:1) (Fig. 1c). There are usually 7 pointed or 

rounded denticles on each tooth with the longest ones positioned laterally (Fig. 1c). In 

81% of radulae the posterior row is as wide as or wider than the anterior row, the widest 

up to 5.3 mm; radula growth is isometric with increasing body size. One or two faint, 

narrow posterior rows are visible in many individuals (Fig. 1d, e) implying, first, that new 

rows were periodically formed posteriorly, but only the anteriormost two rows were fully 

functional; and second, because the distance between the rows is closely similar, they 

were added at regular intervals. The anteriormost row was sloughed off periodically and 

occasionally ingested (Supplementary Figure III), the sloughed off rows were replaced by 

new ones from behind. Isolated radulae with two rows of paired teeth (Fig. 1c) imply that 
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the rows of teeth were connected by a strong decay-resistant material, a radular 

membrane (Fig. 1e).  

A circular structure surrounding the radula is interpreted to represent the mouth 

and pharynx (Fig. 1f). The oesophagus is straight and narrow (Fig. 1f). It expands 

posteriorly into a straight stomach which is usually as wide anteriorly as the radula itself 

(Fig. 1b, f-h, k). The stomach narrows posteriorly towards a straight intestine (Fig. 1b, g), 

and the anus is sub-terminal (Fig. 1g). Broad transverse wrinkles, parallel to each other 

and usually straight, sometimes occur across the midsection of the body (Fig. 1a, j). 

These vary in number between specimens and are only present in the central region of the 

body, demonstrating that they are not expressions of internal or surficial segmentation. 

Wrinkles probably resulted from compression of a thickened central structure that we 

interpret to be ventral and thus likely represents a muscular sole. As a ventral sole it is 

limited anteriorly by the radula and thus lies posterior to the mouth. The sole is 

surrounded on all its sides except the front by darker and serially identical structures that 

we interpret to represent ctenidia (Fig. 1a, b, g-k). Ctenidia (up to 100) are sometimes 

separated from the mantle by a thin layer of sediment (Fig. 1h, i), demonstrating that they 

are located in a narrow recess we interpret to be a mantle groove. A pair of circular 

structures interpreted as salivary glands flanks the radula (Fig. 1h, j, k). Another pair of 

structures, elongate and ovoid, composed of a bundle of fibrous elements, is preserved, 

one element on either side of the posterior part of the stomach and anterior part of the gut 

(Fig. 1b). Our interpretation is that they are gonads or digestive glands. 

Discussion 
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The phylogenetic tree (Fig. 3) depicts the total-group Mollusca based on our 

interpretation of the morphology of Odontogriphus omalus (Fig. 2) and Wiwaxia 

corrugata (Fig. 4). It does not take into account many early mollusc-like forms of 

uncertain affinities which may represent various stem-group eutrochozoans (i.e., 

Machaeridia, Acaenoplax, probivalvia, Hyolitha).  

 Odontogriphus and perhaps the Ediacaran form Kimberella10 possess distinctive 

characters that place them in the molluscs prior to the acquisition of a calcified dorsum. 

That is, they or their closest ancestor arose in the latest Neoproterozoic (certain for 

Kimberella) following the node designating separation of the Annelida and Mollusca 

stems (Fig. 3 – stem 1). The Mollusca ancestor is thought to have been a creeping and 

nonsegmented bilateral animal15 whereas the Annelida probably descended from a 

segmented parapodia-bearing form16, possibly a sister group of the molluscan ancestor15. 

Mesodermal segmentation (metamerism) involving the coelom gave rise to the stem 

annelid (Fig. 3 – 2). Noncoelomic iteration of organ systems, or seriation15, led to the 

ancestral Mollusca (Fig. 3 – 3); this condition is present in Odontogriphus as iterated 

ctenidia and radula teeth.  

The characters held in common by Odontogriphus and Kimberella, the latter 

without preserved internal anatomy, are a dorso-ventrally flattened ovoid shape; large 

size; a cuticular dorsal exoskeleton shown by the integrity of the dorsum relative to soft 

anatomy (cf. Fig 1h with fig. 1h in Kimberella10); a noncuticularized ventral sole; and 

iterated structures (Fig. 3 – 3). These are evolutionary novelties which arose since the 

estimated time of the last common ancestor of bilaterians17, 18. If the interpretation of 

Kimberella as an early mollusc-like organism with radula is correct19 these characteristics 
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combined with the soft and internal anatomy of Odontogriphus define the plesiomorphic 

molluscan morphologies: pre-eminently and unique to Mollusca, an anterior radula with 

periodically sloughed off and replaced rows of teeth on a radular membrane20 (certain for 

Odontogriphus). The acquisition of a ventral mantle groove with replicated ctenidia 

represents a younger evolutionary innovation (Fig. 3 – 4). 

 Wiwaxia corrugata with its dorsum covered by noncalcified sclerites co-occurs 

with Odontogriphus in the Burgess Shale and has a nearly identical radula (Fig. 4) with a 

tooth morphology similar to plesiomorphic Neomeniomorpha20. Its affinities with the 

polychaetes and annelids have been refuted based on absence of externally expressed 

mesodermal segmentation, prostomial appendages and parapodia9. On the basis of its 

radula, ovoid shape, lack of segmentation, and zonation of different sclerite types similar 

to that in Halkieria8, 11, it is considered here to belong to the clade Mollusca (Fig. 3 – 5).  

 Initial acquisition of a calcified exoskeleton and subsequent rapid radiation of 

shelly forms in the early Cambrian21 marks the turning point for molluscan diversity. The 

process began with nucleation of sclerites within the epidermis which then pushed 

through the overlying cuticle (Fig. 3 – 6), a process retained by Polyplacophora and 

Aplacophora (Neomeniomorpha and Chaetodermomorpha22), and may have been the 

same for Halkieria. Shells in the Polyplacophora and possibly Halkieria have been 

thought to be the result of merging of sclerites23. However, it is more likely that the 

acquisition of shell fields provided the functional ability to deposit calcareous shell 

(developmentally separate from sclerite formation in the Polyplacophora22, 24). The 

polytomy of Halkieria (and other halkieriids), Neomeniomorpha, and Polyplacophora 

(Fig. 3 – 7, 8, 9) includes on the polyplacophoran stem the extinct Matthevia25 and the 
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Multiplacophora26. Halkieria, originally described as probably a molluscan-grade 

organism, in part due to the presence of a putative radula11 (but see8), has been 

interpreted most recently as a sister taxon to the Polyplacophora27. However affinities of 

Halkiera still remain highly contentious. Neomeniomorpha have several morphologies 

homologous to those in Polyplacophora28. Some of these are plesiomorphies of the 

Mollusca (Fig. 3 – 3), but others cannot be accommodated on the tree as plesiomorphies, 

including eight shell fields, embryologically vestigial in a neomeniomorph29, manner of 

sclerite deposition22 and unique epidermal gland cells30, 31. The molecular evidence for 

the relationship among the Polyplacophora and the two taxa of Aplacophora is still 

ambiguous.

 The evidence from Odontogriphus, Wiwaxia, Halkieria, and Kimberella indicates 

that early molluscs were not small. Diversity of body form increased with the loss of 

sclerites and the advent of a true periostracum secreted from a groove in the mantle lobe 

as found in all extant Mollusca except the Aplacophora and Polyplacophora22 (Fig. 3 – 

10). This diversification was concomitant with the appearance of crown-group (except 

Scaphopoda) and other stem-group molluscs by the end of the Cambrian32. 

The Cambrian substrate revolution and ecological implications 

Body (Kimberella) and trace (Radulichnus) fossil evidence from Ediacaran 

shallow marine sediments demonstrates the establishment of a bilaterian microphagous 

mat-grazing guild by at least 555 Ma ago19, 33. The subsequent transition from 

Neoproterozoic biomat-dominated seafloors to Phanerozoic-style seafloor conditions, 

characterized by increasingly fluidized substrates, was driven by a shift to more intensive 

and vertically oriented bioturbation across the Precambrian-Cambrian boundary34 (see 
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also the “Cambrian substrate revolution”35, Fig. 3). The redistribution of extensive 

microbial mats and biofilms (along with metazoan grazers) from the open shallow marine 

to stressed nearshore and shelf-edge to deep-sea settings35 was not abrupt, but took place 

over a protracted interval in the Cambrian during which relict mat-based communities 

persisted in at least some marine environments36, including the Burgess Shale34. This 

persistence is evident from the intimate association of Odontogriphus and Wiwaxia with 

dense, sheet-like aggregates of the fossil cyanobacterium Morania37, which often cover 

extensive bedding surfaces14 (Figs. 1a, 2). Morania probably provided a food source and 

stable substrate for an array of Middle Cambrian benthic grazers adapted to 

Neoproterozoic-style substrates38. 

Odontogriphus joins a handful of Cambrian fossils that probably represent 

surviving Neoproterozoic lineages e.g.,39-41. Explanations for the disappearance of other 

soft-bodied elements of the Ediacaran biota (“vendobionts”) vary from a mass extinction 

following global environmental changes, to changes in taphonomic conditions, to the 

emergence of predators42. The widespread appearance of biomineralized organisms near 

the beginning of the Cambrian is believed to be in large part the consequence of rapidly 

expanding predatory selection pressuree.g.,43. However, the presence of a diverse soft-

bodied biota in Cambrian Lagerstätten, including representatives of relict lineages, 

demonstrates that other survival strategies were in play. Odontogriphus would have been 

a prime target for predators, but it is possible that its featureless dorsum (Fig. 2) afforded 

a cryptic lifestyle on the substrate. In the case of the Kimberella-Odontogriphus lineage, 

reduction of suitable habitat could have been at least as important as direct predation 

pressure in explaining the apparent demise of the group after the Middle Cambrian.  
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Methods  

 Digital photography utilized polarizing filters at the camera and light-source to 

increase contrast of internal organs and other anatomical features. Backscattered Electron 

images (BSE) were taken of radulae with a SEMCO Nanolab 7 at the Royal Ontario 

Museum with an acceleration voltage of 30KV (15KV for EDS analyses)(see Ref44 for a 

successful application of this technique). Specimens were wrapped in aluminium foil to 

limit charging in a manner described previously by Allison45.  
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Figure labels; 
 
Figure 1. Odontogriphus omalus from the Middle Cambrian Burgess Shale. All 

specimens are preserved dorso-ventrally, anterior to the top. a, ROM57712, complete 

specimen showing the sole (crescentic wrinkles) lying on the surface of the 

cyanobacterium Morania. b, ROM57725, nearly complete specimen showing putative 

paired gonads or digestive glands and the cyanobacterium Morania. c, ROM57713, 

backscattered image of an isolated two-rowed radula. d, ROM57716, three-rowed radula. 

e, ROM57717, four-rowed radula with putative traces of the radular membrane. f, 

ROM57714 view of the mouth area and anterior end of the stomach. g, ROM57721, 

complete specimen showing the intestine and gut content. h-i, ROM57720 complete 

specimen; h, overall view; i, detail of ctenidia from h. j, ROM57723, complete specimen 

showing the sole (wrinkles). k, ROM57724 complete specimen with paired salivary 

glands and ctenidia. Scale bars: 2cm in a; 1cm in g, h, k; 5mm in b, f, i, j; 1mm in c-e. 
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an=anus, cr=crack, ct=ctenidia, ctg=ctenidia groove, dg?=digestive glands? gc=gut 

content, go?=gonads?, in=intestine, ma=mantle, mo=Morania, oe=esophagus, 

ph=pharynx and mouth area, ra=radula, r1, r2, r3, r4=tooth rows, sg=salivary glands, 

so=sole, st=stomach.  

 

Figure 2. Reconstruction of a colony of Odontogriphus omalus grazing on the 

cyanobacterium Morania (illustration by Marianne Collins © 2006). 

 

Figure 3. Evolutionary tree of the molluscs in the context of the Neoproterozoic-

Cambrian substrate revolution35. 1. Protostome bilaterian; serial replication; triploblastic. 

2. Segmentation by coelomic metameres. 3. Large size; with iteration but not coelomic 

segmentation; ovoid; dorsoventrally flattened; stiffened cuticular dorsum; flat, 

noncuticularized ventral sole; radula of iterated, paired teeth and radular membrane 

(certain for Odontogriphus); feeding on biomat? 4. Groove (mantle cavity) between 

dorsum and ventrum with serial ctenidia; paired salivary glands; straight digestive tract; 

nervous system ladderlike?; coelom posterior, restricted to reproductive and excretory 

organs? 5. Noncalcified scleritome, sclerites arranged in 3 mirror image longitudinal 

zones. 6. Calcification of epidermally nucleated sclerites that pass through cuticle; 

calcified shell from serial shell fields; no periostracum from periostracal groove of mantle 

lobe. 7. Two shell fields. 8. Tubiform; reduced foot; sclerites in 1-3 longitudinal rows 

beside foot groove; progenetic loss of gills and shells; embryological evidence of 

vestigial shell-fields. 9. Eight or more shell fields; sclerites not in longitudinal zones. 10. 
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Loss of sclerites and serial shell fields; true periostracum secreted from mantle lobe; 

shells paired or single; reduction of gills; further variety of body plans. 

 

Figure 4. Wiwaxia corrugata from the Middle Cambrian Burgess Shale. All specimens 

are preserved ventrally, anterior to the top. a, b, ROM57707, pictures courtesy N. 

Butterfield, University of Cambridge. a, complete specimen and location of the radula. b, 

backscattered image of the radula. c, d, ROM57726. c, complete specimen and location 

of the radula. d, detail of the radula highlighted with ammonium chloride sublimate. Note 

the presence of 3 rows of teeth. Scale bars: 5mm in a and c; 250µm in b and d. ra=radula, 

r1, r2, r3=tooth rows, sc=sclerite. 

 

  


