10 research outputs found

    A Draft of the Human Septin Interactome

    Get PDF
    Background: Septins belong to the GTPase superclass of proteins and have been functionally implicated in cytokinesis and the maintenance of cellular morphology. They are found in all eukaryotes, except in plants. In mammals, 14 septins have been described that can be divided into four groups. It has been shown that mammalian septins can engage in homo- and heterooligomeric assemblies, in the form of filaments, which have as a basic unit a hetero-trimeric core. In addition, it has been speculated that the septin filaments may serve as scaffolds for the recruitment of additional proteins. Methodology/Principal Findings: Here, we performed yeast two-hybrid screens with human septins 1-10, which include representatives of all four septin groups. Among the interactors detected, we found predominantly other septins, confirming the tendency of septins to engage in the formation of homo- and heteropolymeric filaments. Conclusions/Significance: If we take as reference the reported arrangement of the septins 2, 6 and 7 within the heterofilament, (7-6-2-2-6-7), we note that the majority of the observed interactions respect the ""group rule"", i.e. members of the same group (e. g. 6, 8, 10 and 11) can replace each other in the specific position along the heterofilament. Septins of the SEPT6 group preferentially interacted with septins of the SEPT2 group (p<0.001), SEPT3 group (p<0.001) and SEPT7 group (p<0.001). SEPT2 type septins preferentially interacted with septins of the SEPT6 group (p<0.001) aside from being the only septin group which interacted with members of its own group. Finally, septins of the SEPT3 group interacted preferentially with septins of the SEPT7 group (p<0.001). Furthermore, we found non-septin interactors which can be functionally attributed to a variety of different cellular activities, including: ubiquitin/sumoylation cycles, microtubular transport and motor activities, cell division and the cell cycle, cell motility, protein phosphorylation/signaling, endocytosis, and apoptosis.Fundao de Amparo a Pesquisa do Estado Sao Paulo (Fapesp)CAPES: Coordenao de Aperfeioamento de Pessoal de Navel SuperiorConselho Nacional de Pesquisa e Desenvolvimento (CNPq)Laboratorio Nacional de Biociencias-Centro Nacional de Pesquisa em Energia e Materais (LNBio-CNPEM

    NEK1 variants confer susceptibility to amyotrophic lateral sclerosis

    Get PDF
    To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology

    The essential amino acid lysine acts as precursor of glutamate in the mammalian central nervous system

    No full text
    Lysine has long been recognized as an essential amino acid for humans and the lack or low supply of this compound in the diet may lead to mental and physical handicaps. Since lysine is severely restricted in cereals, the most important staple food in the world, the understanding of ifs biological roles must be a major concern. Here we show that lysine is an important precursor for de novo synthesis of glutamate, the most significant excitatory neurotransmitter in the mammalian central nervous system. We also show that the synthesis of glutamate from lysine, which is carried out by the saccharopine pathway, is likely to take place in neurons. (C) 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.48841671343
    corecore