92 research outputs found

    Clinical characteristics of patients with type 2 diabetes mellitus at the time of insulin initiation: INSTIGATE observational study in Spain

    Get PDF
    Little information is available on the management of patients with type 2 diabetes mellitus (DM2) in regular clinical practice, prior to and at the point of initiating treatment with insulin. The INSTIGATE study provides a description of the clinical profile of the patient with DM2 who begins treatment with insulin in both primary and secondary care. A total of 224 patients who had been diagnosed with DM2, were not responding to oral treatment, and began receiving insulin were included in the INSTIGATE study in Spain. Demographic data were collected, as well as data on macro- and microvascular complications of diabetes and comorbidities, past medical history of diabetes and oral treatment administered, the clinical severity of diabetes (HbA1c concentration) and insulin treatment initiated. Mean age of the sample was 65.4 years and 56.7% were men. There were 87% of patients who had a diagnosis of at least one significant comorbidity, notably hypertension and hyperlipidemia. The patient profile for metabolic syndrome was met by 75.1% of the patients. There was a higher incidence of macrovascular complications (38.4%) than microvascular complications (16.1%). Prior to insulin initiation, the most recent mean HbA1c was 9.2%. The majority of patients had been treated in the last 12 months with sulfonylureas and/or metformin (69.6 and 57.6%). The most common treatment prior to insulinization was the co-administration of two oral antidiabetics (OADs) (37.5%). Patients with DM2 observed in the study presented with elevated mean HbA1c and body mass index levels, comorbidities and complications related to diabetes at the time of insulin initiation. Changes and adjustments in treatment from diagnosis of diabetes occur when HbA1c levels are far above those recommended by the IDF (International Diabetes Federation), a factor which could be contributing to the development of both macrovascular and microvascular complications in the patient profile described in the study

    Signaling Signatures and Functional Properties of Anti-Human CD28 Superagonistic Antibodies

    Get PDF
    Superagonistic CD28 antibodies (CD28SAs) activate T lymphocytes without concomitant perturbation of the TCR/CD3-complex. In rodents these reagents induce the preferential expansion of regulatory T cells and can be used for the treatment of autoimmune diseases. Unexpectedly, the humanized CD28 superagonist TGN1412 caused severe and life threatening adverse effects during a recently conducted phase I clinical trail. The underlying molecular mechanisms are as yet unclear. We show that TGN1412 as well as the commercially available CD28 superagonist ANC28.1 induce a delayed but extremely sustained calcium response in human naïve and memory CD4+ T cells but not in cynomolgus T lymphocytes. The sustained Ca++-signal was associated with the activation of multiple intracellular signaling pathways and together these events culminated in the rapid de novo synthesis of high amounts of pro-inflammatory cytokines, most notably IFN-γ and TNF-α. Importantly, sustained transmembranous calcium flux, activation of Src-kinases as well as activation of PI3K were found to be absolutely required for CD28SA-mediated production of IFN-γ and IL-2. Collectively, our data suggest a molecular basis for the severe side effects caused by TGN1412 and impinge upon the relevance of non-human primates as preclinical models for reagents that are supposed to modify the function of human T cells

    Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease

    Get PDF
    BACKGROUND: Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS: In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS: Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract

    Current understanding of the human microbiome

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Medicine 24 (2018): 392–400, doi:10.1038/nm.4517.Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes, and mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this Review, we focus on studies in humans to describe these challenges, and propose strategies that leverage existing knowledge to move rapidly from correlation to causation, and ultimately to translation.Many of the studies described here in our laboratories were supported by the NIH, NSF, DOE, and the Alfred P. Sloan Foundation.2018-10-1

    The oral microbiome – an update for oral healthcare professionals

    Get PDF
    For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare

    Bile acids at the cross-roads of gut microbiome–host cardiometabolic interactions

    Full text link

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link
    • 

    corecore