37 research outputs found

    Breakdown of Fermi-liquid theory in a cuprate superconductor

    Full text link
    The behaviour of electrons in solids is remarkably well described by Landau's Fermi-liquid theory, which says that even though electrons in a metal interact they can still be treated as well-defined fermions, called ``quasiparticles''. At low temperature, the ability of quasiparticles to transport heat is strictly given by their ability to transport charge, via a universal relation known as the Wiedemann-Franz law, which no material in nature has been known to violate. High-temperature superconductors have long been thought to fall outside the realm of Fermi-liquid theory, as suggested by several anomalous properties, but this has yet to be shown conclusively. Here we report on the first experimental test of the Wiedemann-Franz law in a cuprate superconductor, (Pr,Ce)2_2CuO4_4. Our study reveals a clear departure from the universal law and provides compelling evidence for the breakdown of Fermi-liquid theory in high-temperature superconductors.Comment: 7 pages, 3 figure

    How Does Reasoning (Fail to) Contribute to Moral Judgment? Dumbfounding and Disengagement

    Get PDF
    Recent experiments in moral psychology have been taken to imply that moral reasoning only serves to reaffirm prior moral intuitions. More specifically, Jonathan Haidt concludes from his moral dumbfounding experiments, in which people condemn other people’s behavior, that moral reasoning is biased and ineffective, as it rarely makes people change their mind. I present complementary evidence pertaining to self-directed reasoning about what to do. More specifically, Albert Bandura’s experiments concerning moral disengagement reveal that moral reasoning often does contribute effectively to the formation of moral judgments. And such reasoning need not be biased. Once this evidence is taken into account, it becomes clear that both cognition and affect can play a destructive as well as a constructive role in the formation of moral judgments

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

    Get PDF
    We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision

    Deepwater Horizon oil spill exposure and child health: a longitudinal analysis

    Get PDF
    The BP Deepwater Horizon oil spill (DHOS) created widespread concern about threats to health among residents of the Louisiana Gulf Coast. This study uses data from the Resilient Children, Youth, and Communities study—a longitudinal cohort survey of households with children in DHOS-affected areas of South Louisiana—to consider the effect of DHOS exposure on health trajectories of children, an especially vulnerable population subgroup. Results from latent linear growth curve models show that family DHOS exposure via physical contact and job/income loss both negatively influenced initial child health. However, the effects of physical exposure dissipated over time while the effects of job/income loss persisted. This pattern holds for both general child health and the number of recent physical health problems children had experienced. These findings help to bridge the literature on disaster impacts and resilience/vulnerability, with the literature on socioeconomic status as a fundamental cause of health outcomes over the life course

    Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 Experiment

    Get PDF
    The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency ωa\omega_a to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of aμ(FNAL)=116592040(54)×1011a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11} (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the eleven separate determinations of \omega_a, and the systematic uncertainties on the result.Comment: 29 pages, 19 figures. Published in Physical Review

    Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab

    Get PDF
    This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 data set of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency ωam\omega_a^m are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to ωam\omega_a^m is 0.50 ±\pm 0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of ωam\omega_a^m

    Magnetic Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab

    Get PDF
    The Fermi National Accelerator Laboratory has measured the anomalous precession frequency aμ=(gμ2)/2a^{}_\mu = (g^{}_\mu-2)/2 of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by nuclear magnetic resonance systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7^\circC. The measured field is weighted by the muon distribution resulting in ω~p\tilde{\omega}'^{}_p, the denominator in the ratio ωa\omega^{}_a/ω~p\tilde{\omega}'^{}_p that together with known fundamental constants yields aμa^{}_\mu. The reported uncertainty on ω~p\tilde{\omega}'^{}_p for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb
    corecore