345 research outputs found

    The assessment of researchers' competence in experimental procedures with laboratory animals: A three-step methodology to develop a global rating scale

    Get PDF
    To conduct animal experiments, researchers must be competent to handle and perform interventions on living animals in compliance with regulations. Laboratory animal science training programs and licensing bodies therefore need to be able to reliably ensure and certify the professional competence of researchers and technicians. This requires access to assessment strategies which can verify knowledge as well as capturing performative and behavioral dimensions of assessment. In this paper, we describe the process of developing different global rating scales measuring candidates’ competence in a performative assessment. We set out the following sequence, with three crucial phases, in the process of scale development: (A) Item Development, (B) Scale Development, and (C) Piloting of the Scale. We note each phase’s different sub-steps. Despite the emergent need to ensure the competence of researchers using animals in scientific procedures, to our best knowledge there are very few species and procedure/skill specific assessment tools for this purpose, and the assessment methodology literature in the field is very limited. This paper provides guidance for those who need to develop and assess proficiency in laboratory animal procedures by setting out a method that can be used to create the required tools and illustrating how competence assessment strategies can be implemented.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: this work is a result of the project funded by Norte01- 0145-FEDER-000008 – Porto Neurosciences and Neurologic Disease Research Initiative at i3S, supported by Norte Portugal Regional Operational Programme (NORTE2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)

    Field-driven femtosecond magnetization dynamics induced by ultrastrong coupling to THz transients

    Full text link
    Controlling ultrafast magnetization dynamics by a femtosecond laser is attracting interest both in fundamental science and industry because of the potential to achieve magnetic domain switching at ever advanced speed. Here we report experiments illustrating the ultrastrong and fully coherent light-matter coupling of a high-field single-cycle THz transient to the magnetization vector in a ferromagnetic thin film. We could visualize magnetization dynamics which occur on a timescale of the THz laser cycle and two orders of magnitude faster than the natural precession response of electrons to an external magnetic field, given by the Larmor frequency. We show that for one particular scattering geometry the strong coherent optical coupling can be described within the framework of a renormalized Landau Lifshitz equation. In addition to fundamentally new insights to ultrafast magnetization dynamics the coherent interaction allows for retrieving the complex time-frequency magnetic properties and points out new opportunities in data storage technology towards significantly higher storage speed.Comment: 25 page

    De Broglie Wavelength of a Nonlocal Four-Photon

    Full text link
    Superposition is one of the most distinct features of quantum theory and has been demonstrated in numerous realizations of Young's classical double-slit interference experiment and its analogues. However, quantum entanglement - a significant coherent superposition in multiparticle systems - yields phenomena that are much richer and more interesting than anything that can be seen in a one-particle system. Among them, one important type of multi-particle experiments uses path-entangled number-states, which exhibit pure higher-order interference and allow novel applications in metrology and imaging such as quantum interferometry and spectroscopy with phase sensitivity at the Heisenberg limit or quantum lithography beyond the classical diffraction limit. Up to now, in optical implementations of such schemes lower-order interference effects would always decrease the overall performance at higher particle numbers. They have thus been limited to two photons. We overcome this limitation and demonstrate a linear-optics-based four-photon interferometer. Observation of a four-particle mode-entangled state is confirmed by interference fringes with a periodicity of one quarter of the single-photon wavelength. This scheme can readily be extended to arbitrary photon numbers and thus represents an important step towards realizable applications with entanglement-enhanced performance.Comment: 19 pages, 4 figures, submitted on November 18, 200

    Optimal quantum cloning of orbital angular momentum photon qubits via Hong-Ou-Mandel coalescence

    Full text link
    The orbital angular momentum (OAM) of light, associated with a helical structure of the wavefunction, has a great potential for quantum photonics, as it allows attaching a higher dimensional quantum space to each photon. Hitherto, however, the use of OAM has been hindered by its difficult manipulation. Here, exploiting the recently demonstrated spin-OAM information transfer tools, we report the first observation of the Hong-Ou-Mandel coalescence of two incoming photons having nonzero OAM into the same outgoing mode of a beam-splitter. The coalescence can be switched on and off by varying the input OAM state of the photons. Such effect has been then exploited to carry out the 1 \rightarrow 2 universal optimal quantum cloning of OAM-encoded qubits, using the symmetrization technique already developed for polarization. These results are finally shown to be scalable to quantum spaces of arbitrary dimension, even combining different degrees of freedom of the photons.Comment: 5 pages, 3 figure

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets
    • …
    corecore