4,164 research outputs found
Excitation and entanglement transfer versus spectral gap
Published versio
Engineering cellular communication between light-activated synthetic cells and bacteria
Gene-expressing compartments assembled from simple, modular parts, are a versatile platform for creating minimal synthetic cells with life-like functions. By incorporating gene regulatory motifs into their encapsulated DNA templates, in situ gene expression and, thereby, synthetic cell function can be controlled according to specific stimuli. In this work, cell-free protein synthesis within synthetic cells was controlled using light by encoding genes of interest on light-activated DNA templates. Light-activated DNA contained a photocleavable blockade within the T7 promoter region that tightly repressed transcription until the blocking groups were removed with ultraviolet light. In this way, synthetic cells were activated remotely, in a spatiotemporally controlled manner. By applying this strategy to the expression of an acyl homoserine lactone synthase, BjaI, quorum-sensing-based communication between synthetic cells and bacteria was controlled with light. This work provides a framework for the remote-controlled production and delivery of small molecules from nonliving matter to living matter, with applications in biology and medicine. [Figure not available: see fulltext.
Atomic and Molecular Interstellar Absorption Lines toward the High Galactic Latitude Stars HD 141569 and HD 157841 at Ultra-High Resolution
We present ultra-high-resolution (0.32 km s-1) spectra obtained with the 3.9 m Anglo-Australian Telescope (AAT) and Ultra-High-Resolution Facility (UHRF) of interstellar Na I D1, Na I D2, Ca II K, K I, and CH absorption toward two high Galactic latitude stars HD 141569 and HD 157841. We have compared our data with 21 cm observations obtained from the Leiden/Dwingeloo H I survey. We derive the velocity structure and column densities of the clouds represented by the various components and identify the clouds with ISM structures seen in the region at other wavelengths. We further derive abundances, linear depletions, and H2 fractional abundances for these clouds wherever possible. Both stars are located in regions of IRAS 100 μm emission associated with high Galactic latitude molecular clouds (HLCs): HD 141569 lies, in projection, close to MBM 37 and the Lynds dark cloud L134N, whereas HD 157841 is in the vicinity of the MBM 151. Toward HD 141569 we detect two components in our UHRF spectra: a weak, broad b = 4.5 km s-1 component at -15 km s-1, seen only in Ca II K absorption, and another component at 0 km s-1, seen in Na I D1, Na I D2, Ca II K, K I, and CH absorption. The cloud represented by the -15 km s-1 component is warm and may be located in a region close to the star. The cloud represented by the 0 km s-1 component has a Ca linear depletion δ(Ca) = 1.4 × 10-4 and shows evidence for the presence of dust, consistent with strong 100 μm emission seen in this region. The H2 fractional abundance f(H2) derived for this cloud is 0.4, which is typically what is observed toward HLCs. We conclude that this 0 km s-1 cloud is associated with MBM 37 and L134N based on the presence of dust and molecular gas (CH) and good velocity agreement with CO emission from these two clouds. This places HD 141569 beyond MBM 37 and L134N, which are estimated to be at ≈ 110 pc. In the case of the HD 157841 sight line, a total of six components are seen on our UHRF spectra in Na I D1, Na I D2, Ca II K, K I, and CH absorption. Two of these six components are seen only in a single species. The cloud represented by the components at 1.85 km s-1 has a Ca linear depletion δ(Ca) = 2.8 × 10-4, indicating the presence of dust. The f(H2) derived for this cloud is 0.45, and there is good velocity agreement with CO emission from MBM 151. To the best of our knowledge, this 1.85 km s-1 component toward HD 157841 is the first one found to have relative line widths that are consistent with pure thermal broadening only. We associate the 1.85 km s-1 cloud seen in our UHRF spectra with MBM 151 and conclude that HD 157841 must lie beyond ~200 pc, the estimated distance to MBM 151
Ossifying Fibroma of Non-odontogenic Origin: A Fibro-osseous Lesion in the Craniofacial Skeleton to be (Re-)considered
In the cranio-facial skeleton, a heterogeneous group of well characterized fibro-osseous lesions can be distinguished. Whereas fibrous dysplasia can affect any skeletal bone, ossifying fibroma and cemento-osseous dysplasia exclusively develop in the cranio-facial region, with most subtypes restricted to the tooth bearing areas of the jaws. Herein we present a series of 20 fibro-osseous lesions that developed mostly in the frontal bone and in the mandible, presenting as expansile intramedullary tumors with a unique histologic appearance and an indolent clinical course. We provide evidence that these tumors are distinct from the categories included in the WHO classification and are therefore currently unclassifiable. The definition of cemento-ossifying fibroma as an odontogenic neoplasm developing only in close proximity to teeth should be re-considered and incorporate also extragnathic lesions as shown here
The lower mass function of the young open cluster Blanco 1: from 30 Mjup to 3 Mo
We performed a deep wide field optical survey of the young (~100-150 Myr)
open cluster Blanco1 to study its low mass population well down into the brown
dwarf regime and estimate its mass function over the whole cluster mass
range.The survey covers 2.3 square degrees in the I and z-bands down to I ~ z ~
24 with the CFH12K camera. Considering two different cluster ages (100 and 150
Myr), we selected cluster member candidates on the basis of their location in
the (I,I-z) CMD relative to the isochrones, and estimated the contamination by
foreground late-type field dwarfs using statistical arguments, infrared
photometry and low-resolution optical spectroscopy. We find that our survey
should contain about 57% of the cluster members in the 0.03-0.6 Mo mass range,
including 30-40 brown dwarfs. The candidate's radial distribution presents
evidence that mass segregation has already occured in the cluster. We took it
into account to estimate the cluster mass function across the
stellar/substellar boundary. We find that, between 0.03Mo and 0.6Mo, the
cluster mass distribution does not depend much on its exact age, and is well
represented by a single power-law, with an index alpha=0.69 +/- 0.15. Over the
whole mass domain, from 0.03Mo to 3Mo, the mass function is better fitted by a
log-normal function with m0=0.36 +/- 0.07Mo and sigma=0.58 +/- 0.06. Comparison
between the Blanco1 mass function, other young open clusters' MF, and the
galactic disc MF suggests that the IMF, from the substellar domain to the
higher mass part, does not depend much on initial conditions. We discuss the
implications of this result on theories developed to date to explain the origin
of the mass distribution.Comment: 18 pages, 15 figures and 5 tables accepted in A&
Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.
Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis
Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine-Selective Protein Modification and Charge Modulation.
Quaternized vinyl- and alkynyl-pyridine reagents were shown to react in an ultrafast and selective manner with several cysteine-tagged proteins at near-stoichiometric quantities. We have demonstrated that this method can effectively create a homogenous antibody-drug conjugate that features a precise drug-to-antibody ratio of 2, which was stable in human plasma and retained its specificity towards Her2+ cells. Finally, the developed warhead introduces a +1 charge to the overall net charge of the protein, which enabled us to show that the electrophoretic mobility of the protein may be tuned through the simple attachment of a quaternized vinyl pyridinium reagent at the cysteine residues. We anticipate the generalized use of quaternized vinyl- and alkynyl-pyridine reagents not only for bioconjugation, but also as warheads for covalent inhibition and as tools to profile cysteine reactivity
Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice
Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass
- …