1,899 research outputs found

    DESCRIPCIÓN Y ANÁLISIS DEL GRADO DE APLICACIÓN DEL PROGRAMA INFORMÁTICO DE CUIDADOS, AZAHAR, EN EL HOSPITAL UNIVERSITARIO REINA SOFÍA DE CÓRDOBA. PLANTEAMIENTO DE NUEVAS LÍNEAS DE ACTUACIÓN

    Get PDF
    To provide qualitative nursing care starting from a jointly unity criteria was one of the objectives to register and manage the nursing care process through a computer program at the Hospital of Reina Sofia in Cordoba. We present a first assessment on its application.Prestar cuidados enfermeros de calidad a partir de una unidad consensuada de criterio fue uno de los objetivos para registrar y gestionar el Proceso de Atención de Enfermería a través de un programa informático, en el Hospital Reina Sofía de Córdoba. Se presenta una primera evaluación de su grado de aplicació

    The Future of Business Discourse Teaching

    Get PDF
    This chapter will:; ; ; Explore ways in which new media and digital technologies are shaping business communication and highlight the importance of digital communicative competence for learners and teachers;; ; ; Discuss ways in which the digital workplace can be brought into the business discourse classroom;; ; ; Discuss the role of Business English and other business languages in international business and what this means for business discourse teaching;; ; ; Consider how the multicultural workplace can inform business discourse teaching;; ; ; Provide a case study that illustrates some of the above developments, together with a set of tasks appropriate for the business discourse classroom, and a set of further readings

    Reconstructing the three-dimensional GABAergic microcircuit of the striatum

    Get PDF
    A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100 mu m of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are interconnected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study

    Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death

    Get PDF
    The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer. Cell Death and Disease (2010) 1, e9; doi:10.1038/cddis.2009.11; published online 14 January 201

    The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor syndrome and congenital fumarase deficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fumarate hydratase (HGNC approved gene symbol – <it>FH</it>), also known as fumarase, is an enzyme of the tricarboxylic acid (TCA) cycle, involved in fundamental cellular energy production. First described by Zinn <it>et al </it>in 1986, deficiency of FH results in early onset, severe encephalopathy. In 2002, the Multiple Leiomyoma Consortium identified heterozygous germline mutations of <it>FH </it>in patients with multiple cutaneous and uterine leiomyomas, (MCUL: OMIM 150800). In some families renal cell cancer also forms a component of the complex and as such has been described as hereditary leiomyomatosis and renal cell cancer (HLRCC: OMIM 605839). The identification of FH as a tumor suppressor was an unexpected finding and following the identification of subunits of succinate dehydrogenase in 2000 and 2001, was only the second description of the involvement of an enzyme of intermediary metabolism in tumorigenesis.</p> <p>Description</p> <p>The <it>FH </it>mutation database is a part of the TCA cycle gene mutation database (formerly the succinate dehydrogenase gene mutation database) and is based on the Leiden Open (source) Variation Database (LOVD) system. The variants included in the database were derived from the published literature and annotated to conform to current mutation nomenclature. The <it>FH </it>database applies HGVS nomenclature guidelines, and will assist researchers in applying these guidelines when directly submitting new sequence variants online. Since the first molecular characterization of an <it>FH </it>mutation by Bourgeron <it>et al </it>in 1994, a series of reports of both FH deficiency patients and patients with MCUL/HLRRC have described 107 variants, of which 93 are thought to be pathogenic. The most common type of mutation is missense (57%), followed by frameshifts & nonsense (27%), and diverse deletions, insertions and duplications. Here we introduce an online database detailing all reported <it>FH </it>sequence variants.</p> <p>Conclusion</p> <p>The <it>FH </it>mutation database strives to systematically unify all current genetic knowledge of <it>FH </it>variants. We believe that this knowledge will assist clinical geneticists and treating physicians when advising patients and their families, will provide a rapid and convenient resource for research scientists, and may eventually assist in gaining novel insights into FH and its related clinical syndromes.</p

    HCV genome-wide genetic analyses in context of disease progression and hepatocellular carcinoma

    Get PDF
    <div><p>Hepatitis C virus (HCV) is a major cause of hepatitis and hepatocellular carcinoma (HCC) world-wide. Most HCV patients have relatively stable disease, but approximately 25% have progressive disease that often terminates in liver failure or HCC. HCV is highly variable genetically, with seven genotypes and multiple subtypes per genotype. This variation affects HCV’s sensitivity to antiviral therapy and has been implicated to contribute to differences in disease. We sequenced the complete viral coding capacity for 107 HCV genotype 1 isolates to determine whether genetic variation between independent HCV isolates is associated with the rate of disease progression or development of HCC. Consensus sequences were determined by sequencing RT-PCR products from serum or plasma. Positions of amino acid conservation, amino acid diversity patterns, selection pressures, and genome-wide patterns of amino acid covariance were assessed in context of the clinical phenotypes. A few positions were found where the amino acid distributions or degree of positive selection differed between in the HCC and cirrhotic sequences. All other assessments of viral genetic variation and HCC failed to yield significant associations. Sequences from patients with slow disease progression were under a greater degree of positive selection than sequences from rapid progressors, but all other analyses comparing HCV from rapid and slow disease progressors were statistically insignificant. The failure to observe distinct sequence differences associated with disease progression or HCC employing methods that previously revealed strong associations with the outcome of interferon α-based therapy implies that variable ability of HCV to modulate interferon responses is not a dominant cause for differential pathology among HCV patients. This lack of significant associations also implies that host and/or environmental factors are the major causes of differential disease presentation in HCV patients.</p></div

    Subcellular Localization of Hexokinases I and II Directs the Metabolic Fate of Glucose

    Get PDF
    The first step in glucose metabolism is conversion of glucose to glucose 6-phosphate (G-6-P) by hexokinases (HKs), a family with 4 isoforms. The two most common isoforms, HKI and HKII, have overlapping tissue expression, but different subcellular distributions, with HKI associated mainly with mitochondria and HKII associated with both mitochondrial and cytoplasmic compartments. Here we tested the hypothesis that these different subcellular distributions are associated with different metabolic roles, with mitochondrially-bound HK's channeling G-6-P towards glycolysis (catabolic use), and cytoplasmic HKII regulating glycogen formation (anabolic use).To study subcellular translocation of HKs in living cells, we expressed HKI and HKII linked to YFP in CHO cells. We concomitantly recorded the effects on glucose handling using the FRET based intracellular glucose biosensor, FLIPglu-600 mM, and glycogen formation using a glycogen-associated protein, PTG, tagged with GFP. Our results demonstrate that HKI remains strongly bound to mitochondria, whereas HKII translocates between mitochondria and the cytosol in response to glucose, G-6-P and Akt, but not ATP. Metabolic measurements suggest that HKI exclusively promotes glycolysis, whereas HKII has a more complex role, promoting glycolysis when bound to mitochondria and glycogen synthesis when located in the cytosol. Glycogen breakdown upon glucose removal leads to HKII inhibition and dissociation from mitochondria, probably mediated by increases in glycogen-derived G-6-P.These findings show that the catabolic versus anabolic fate of glucose is dynamically regulated by extracellular glucose via signaling molecules such as intracellular glucose, G-6-P and Akt through regulation and subcellular translocation of HKII. In contrast, HKI, which activity and regulation is much less sensitive to these factors, is mainly committed to glycolysis. This may be an important mechanism by which HK's allow cells to adapt to changing metabolic conditions to maintain energy balance and avoid injury
    corecore