79 research outputs found

    All Our Babies Cohort Study: recruitment of a cohort to predict women at risk of preterm birth through the examination of gene expression profiles and the environment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preterm birth is the leading cause of perinatal morbidity and mortality. Risk factors for preterm birth include a personal or familial history of preterm delivery, ethnicity and low socioeconomic status yet the ability to predict preterm delivery before the onset of preterm labour evades clinical practice. Evidence suggests that genetics may play a role in the multi-factorial pathophysiology of preterm birth. The All Our Babies Study is an on-going community based longitudinal cohort study that was designed to establish a cohort of women to investigate how a women's genetics and environment contribute to the pathophysiology of preterm birth. Specifically this study will examine the predictive potential of maternal leukocytes for predicting preterm birth in non-labouring women through the examination of gene expression profiles and gene-environment interactions.</p> <p>Methods/Design</p> <p>Collaborations have been established between clinical lab services, the provincial health service provider and researchers to create an interdisciplinary study design for the All Our Babies Study. A birth cohort of 2000 women has been established to address this research question. Women provide informed consent for blood sample collection, linkage to medical records and complete questionnaires related to prenatal health, service utilization, social support, emotional and physical health, demographics, and breast and infant feeding. Maternal blood samples are collected in PAXgeneℱ RNA tubes between 18-22 and 28-32 weeks gestation for transcriptomic analyses.</p> <p>Discussion</p> <p>The All Our Babies Study is an example of how investment in clinical-academic-community partnerships can improve research efficiency and accelerate the recruitment and data collection phases of a study. Establishing these partnerships during the study design phase and maintaining these relationships through the duration of the study provides the unique opportunity to investigate the multi-causal factors of preterm birth. The overall All Our Babies Study results can potentially lead to healthier pregnancies, mothers, infants and children.</p

    Mitochondrial Control Region and microsatellite analyses on harbour porpoise (Phocoena phocoena) unravel population differentiation in the Baltic Sea and adjacent waters

    Get PDF
    The population status of the harbour porpoise (Phocoena phocoena) in the Baltic area has been a continuous matter of debate. Here we present the by far most comprehensive genetic population structure assessment to date for this region, both with regard to geographic coverage and sample size: 497 porpoise samples from North Sea, Skagerrak, Kattegat, Belt Sea, and Inner Baltic Sea were sequenced at the mitochondrial Control Region and 305 of these specimens were typed at 15 polymorphic microsatellite loci. Samples were stratified according to sample type (stranding vs. by-caught), sex, and season (breeding vs. non-breeding season). Our data provide ample evidence for a population split between the Skagerrak and the Belt Sea, with a transition zone in the Kattegat area. Among other measures, this was particularly visible in significant frequency shifts of the most abundant mitochondrial haplotypes. A particular haplotype almost absent in the North Sea was the most abundant in Belt Sea and Inner Baltic Sea. Microsatellites yielded a similar pattern (i.e., turnover in occurrence of clusters identified by STRUCTURE). Moreover, a highly significant association between microsatellite assignment and unlinked mitochondrial haplotypes further indicates a split between North Sea and Baltic porpoises. For the Inner Baltic Sea, we consistently recovered a small, but significant separation from the Belt Sea population. Despite recent arguments that separation should exceed a predefined threshold before populations shall be managed separately, we argue in favour of precautionary acknowledging the Inner Baltic porpoises as a separate management unit, which should receive particular attention, as it is threatened by various factors, in particular local fishery measures. © Springer Science+Business Media B.V. 2009

    Dendritic excitation–inhibition balance shapes cerebellar output during motor behaviour

    Get PDF
    Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation–inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour

    Italian Association of Clinical Endocrinologists (AME) position statement: a stepwise clinical approach to the diagnosis of gastroenteropancreatic neuroendocrine neoplasms

    Get PDF

    Roles of the mammalian subventricular zone in cell replacement after brain injury.

    No full text
    The subventricular zones (SVZs) are essential sources of new cells in the developing brain and remnants of these germinal zones persist into adulthood. As these cells have the capacity to replenish neurons and glia that are turning over, many investigators have assessed the SVZ's role in replacing neural cells eliminated by brain injuries. A review of the literature reveals that the progenitors within the SVZs are vulnerable to chemical, radiation and ischemia-induced damage, whereas the neural stem cells are resilient. With moderate insults, the SVZ can recover, but it cannot recover after more severe injury. Thus, the vulnerability of these cells has important ramifications when considering therapeutic interventions for the treatment of brain tumors and for the prospect of recovery after ischemia. The cells of the perinatal and adult SVZ not only have the capacity to replenish their own numbers, but they also have the capacity to replace neurons and glia after ischemic and traumatic brain injuries. Moreover, the mechanisms underlying these regenerative responses are beginning to be revealed. By reviewing, comparing and contrasting the responses of the SVZs to different injuries, our goal is to provide a foundation from which current and future studies on the potential of the SVZs for cell replacement can be evaluated

    Infant skin-cleansing product versus water:a pilot randomized, assessor-blinded controlled trial

    Get PDF
    Background The vulnerability of newborn babies' skin creates the potential for a number of skin problems. Despite this, there remains a dearth of good quality evidence to inform practice. Published studies comparing water with a skin-cleansing product have not provided adequate data to inform an adequately powered trial. Nor have they distinguished between babies with and without a predisposition to atopic eczema. We conducted a pilot study as a prequel to designing an optimum trial to investigate whether bathing with a specific cleansing product is superior to bathing with water alone. The aims were to produce baseline data which would inform decisions for the main trial design (i.e. population, primary outcome, sample size calculation) and to optimize the robustness of trial processes within the study setting. Methods 100 healthy, full term neonates aged <24 hours were randomly assigned to bathing with water and cotton wool (W) or with a cleaning product (CP). A minimum of bathing 3 times per week was advocated. Groups were stratified according to family history of atopic eczema. Transepidermal water loss (TEWL), stratum corneum hydration and skin surface pH were measured within 24 hours of birth and at 4 and 8 weeks post birth. Measurements were taken on the thigh, forearm and abdomen. Women also completed questionnaires and diaries to record bathing practices and medical treatments. Results Forty nine babies were randomized to cleansing product, 51 to water. The 95% confidence intervals (CI) for the average TEWL measurement at each time point were: whole sample at baseline: 10.8 g/m2/h to 11.7 g/m2/h; CP group 4 weeks: 10.9 g/m2/h to 13.3 g/m2/h; 8 weeks: 11.4 g/m2/h to 12.9 g/m2/h; W group 4 weeks:10.9 g/m2/h to 12.2 g/m2/h; 8 weeks: 11.4 g/m2/h to 12.9 g/m2/h. Conclusion This pilot study provided valuable baseline data and important information on trial processes. The decision to proceed with a superiority trial, for example, was inconsistent with our data; therefore a non-inferiority trial is recommended
    • 

    corecore