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Dendritic excitation–inhibition balance shapes
cerebellar output during motor behaviour
Marta Jelitai1,2, Paolo Puggioni1,3,4, Taro Ishikawa5, Arianna Rinaldi1,w & Ian Duguid1

Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these

circuits interact to shape the somatodendritic excitability of Purkinje cells during motor

behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp

recordings in vivo combined with optogenetic silencing of interneurons to investigate how

dendritic excitation and inhibition generates bidirectional (that is, increased or decreased)

Purkinje cell output during self-paced locomotion. We find that granule cells generate a

sustained depolarization of Purkinje cell dendrites during movement, which is counter-

balanced by variable levels of feedforward inhibition from local interneurons. Subtle differ-

ences in the dendritic excitation–inhibition balance generate robust, bidirectional changes in

simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer

interneurons results in unidirectional firing rate changes, increased SSp regularity and

disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how

feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor

behaviour.

DOI: 10.1038/ncomms13722 OPEN

1 Centre for Integrative Physiology and Patrick Wild Centre, University of Edinburgh, Edinburgh Medical School: Biomedical Sciences, Hugh Robson Building,
George Square, Edinburgh EH8 9XD, UK. 2 Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary. 3 Institute for
Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK. 4 Neuroinformatics Doctoral Training Centre,
School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK. 5 Department of Pharmacology, Jikei University School of Medicine, Tokyo 105-8461,
Japan. w Present address: Department of Biology e Biotechnology ‘C. Darwin’, Sapienza University of Rome, 00185 Rome, Italy. Correspondence and requests
for materials should be addressed to I.D. (email: Ian.Duguid@ed.ac.uk).

NATURE COMMUNICATIONS | 7:13722 | DOI: 10.1038/ncomms13722 | www.nature.com/naturecommunications 1

mailto:Ian.Duguid@ed.ac.uk
http://www.nature.com/naturecommunications


C
erebellar Purkinje cells (PCs) encode sensorimotor
information during locomotion via bidirectional modula-
tion (that is, increase or decrease) of their simple spike

(SSp) firing rates1–5. In the intact cerebellum, PCs display
baseline firing rates of B50 Hz, which can be enhanced (up to a
maximum firing frequency of 250 Hz) or suppressed (to B5 Hz)
during movement. This bidirectional modulation is thought to be
dependent upon the interplay between somatic and dendritic
intrinsic conductances6–9 and activity-dependent changes in the
balance between excitation and inhibition10–13. PCs—the axons
of which constitute the sole output from the cerebellar cortex—
receive strong feedforward inhibition (FFI) from molecular layer
interneurons (MLIs)11,14–17. This fast, direct inhibition opposes
the effects of excitatory input from cerebellar granule cells (GCs)
to modulate the rate and temporal dynamics of PC SSp
output15,18. While previous experimental and modelling studies
have highlighted the importance of excitatory and inhibitory
synaptic input in regulating PC SSp dynamics and motor
control10–12,15,19–21, how these inputs combine to generate
bidirectional PC SSp output during motor behaviour remains
unresolved.

To elucidate the mechanisms underpinning SSp modulation,
we aimed to test three biologically plausible synaptic input
models in vivo (Fig. 1a,b). Model 1 describes bidirectional
changes (that is, an enhancement or suppression) in feedforward
excitation (FFE) from GCs accompanied by a concomitant
increase in FFI from MLIs. In this scenario, if the steady-state
level of inhibitory input is outweighed by an increase in
excitation, SSp firing rates increase, whereas if the level of
excitatory input falls during locomotion, inhibition dominates to
reduce the SSp firing rate. Although GCs appear to display
unidirectional firing rate changes during locomotion22, altered
sensory input to preferred versus non-preferred stimuli has the
potential to drive bidirectional firing rate modulation in GCs23.
Model 2 describes bidirectional inhibitory input modulation with
a concomitant increase in excitation, where reduced inhibition
allows FFE to dominate increasing SSp firing rates, whereas
enhanced inhibition has the opposing effect. Mutual inhibition of
MLIs has the potential to produce complex patterns of enhanced
and suppressed FFI to PCs15,24. Finally, model 3 describes the
unidirectional but variable enhancement of FFE and FFI, the ratio
of which dictates the magnitude and direction of PC SSp firing
rate changes.

To test these synaptic input models in vivo, we combined
dendritic and somatic patch-clamp recordings from PCs,
optogenetic silencing of MLIs and quantitative behavioural
analysis. We show that GCs generate a sustained depolarization
of PC dendrites during movement, which is counterbalanced by
variable levels of FFI from MLIs. Locomotion-dependent
modulation of the balance between excitation and inhibition
generates depolarizing or hyperpolarizing dendritic membrane
potential (Vm) changes that linearly transform into bidirectional
modulation of PC SSp output. Disrupting the excitation–
inhibition balance by selectively silencing MLIs abolishes
bidirectional firing rate changes, increases the rate and regularity
of SSps, and disrupts normal locomotor function. Together, our
findings provide a mechanistic understanding of how feedforward
excitatory and inhibitory circuits regulate the somatodendritic
excitability of PCs during self-paced motor behaviour.

Results
Modulation of PC SSp output during locomotion. To investi-
gate the cellular mechanisms underpinning bidirectional PC SSp
modulation during locomotion2–5,25, we made somatic patch-
clamp recordings from adult mouse PCs along the apex of lobule

V during self-paced, voluntary locomotion on a single axis,
cylindrical treadmill (Fig. 1c). The relationship between PC SSp
firing rates and changing behavioural state (that is, quiet
wakefulness versus self-paced locomotion) was measured by
extracting a motion index (MI) from digital video sequences and
aligning this to our electrophysiological recordings (Fig. 1c–e; see
Methods)26. Although the MI does not provide information
regarding specific aspects of limb movement/coordination, it does
provide a sensitive measure of whole-body movement including
movement preparation, which precedes rotation of the treadmill
(Supplementary Fig. 1).

PCs were identified based on their distinct electrophysiological
signatures—including the occurrence of complex spikes (CSs) at
B1 Hz (ref. 27)—and morphology (Fig. 1d,e,j; Supplementary
Tables 1 and 2). During quiet wakefulness, PCs displayed
unimodal subthreshold Vm distributions (23/24 cells) centred
around � 50 mV (� 50.5±0.47 mV, range � 45.8 to � 54.1 mV;
Supplementary Fig. 2B), and a wide range of somatic SSp firing
rates (mean 66.9±4.9 Hz, range 12.4–171.9 Hz, n¼ 38 cells from
N¼ 33 mice). During locomotion, PC SSp firing rates increased,
decreased or remained unaffected (n¼ 21/38, 14/38, and 3/38
cells, respectively, based on the correlation coefficients between
firing rate and MI) effectively forming a continuum of positive to
negative SSp firing rate changes (Fig. 1e–g; Supplementary
Fig. 2C). The direction of SSp modulation during locomotion
did not depend on the quiet wakefulness firing rate of individual
PCs (r¼ � 0.02, P¼ 0.91, n¼ 38 from N¼ 33 mice;
Supplementary Fig. 2D,E)—that is, cells that displayed high
firing rates during quiet wakefulness did not show a bias towards
decreasing their firing rates during locomotion or vice versa5.
Moreover, the direction of each SSp firing rate change was
maintained across successive bouts of locomotion, suggesting
individual PCs reliably encode similar locomotion-based
movements with comparable changes in SSp firing rate
(Supplementary Fig. 3). PCs also differed in their sensitivity to
movement, with some cells displaying SSp firing rate changes that
correlated with the magnitude of movement (MI¼ 0–8, TauMI

B1–10, solid purple line; Fig. 1h,i), while other PCs were highly
sensitive to small movements associated with movement
preparation or initiation (MI¼ 0–2, TauMI B0–1), but insen-
sitive to increased movement during locomotion (asymptotic;
MI¼ 2–8; dashed purple line; Fig. 1h,i; Supplementary Fig. 4).

During quiet wakefulness, PCs also displayed climbing fibre-
mediated CS activity at B1.4 Hz (1.36±0.05 range 0.86–1.9,
n¼ 38; Supplementary Table 2), where approximately half of the
cells exhibited reciprocal CS–SSp firing rates (r¼ � 0.41±0.04,
n¼ 18/38, Po0.05). During locomotion, CS activity was also
enhanced, suppressed or unaffected, forming a continuum of
positive to negative rate changes and, in general, the SSp-CS
reciprocity was maintained (r¼ � 0.54±0.05, n¼ 10/38,
Po0.05; Fig. 1j–m).

Dendritic membrane potential changes during locomotion. To
investigate the extent to which movement-related changes in
dendritic Vm shapes PC spike output, we made dendritic patch-
clamp recordings from PCs during self-paced locomotion. The
somatodendritic structure of PCs, with primary and secondary
dendrites measuring B3–8 mm in diameter, make them amenable
to intracellular recording in vivo (Fig. 2a). While somatic
recordings were identified by the presence of full-height simple
(SSps) and CSs, dendritic recordings were identified by the pre-
sence of large overshooting calcium spikes and smaller ‘spikelets’
(Fig. 2a; Supplementary Table 2). Since PC dendrites do not
support active backpropagation of action potentials6,21,28,
dendritic ‘spikelets’ reflect passive backpropagation of SSps
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from the soma to the dendrite (dendritic SSps (dSSps); 3–10 mV
in amplitude B40–80 mm from soma, o3 mV in amplitude
480mm from soma, n¼ 19 from N¼ 17 mice; Fig. 2a,b).

During locomotion, we observed a continuum of dendritic Vm

(dVm) changes ranging from a moderate hyperpolarization
(� 2.6 mV) to a modest depolarization (5.2 mV; n¼ 19 cells;
Fig. 2b,c), which persisted for the duration of each movement
bout. Although quiet wakefulness dVm distributions were
relatively broad (dVm s.d. 2.26±0.11 mV, n¼ 19 cells) locomo-
tion induced a clear leftward (that is, hyperpolarization) or
rightward (that is, depolarization) shift in dVm (Supplementary
Fig. 5). Similar to somatic SSp firing rates, PC dVm displayed

differing sensitivity to movement, with some cells displaying dVm

changes that correlated with the magnitude of movement
(MI¼ 0–8, TauMI B1–8, solid purple line), while other PCs
were highly sensitive to small movements associated with
movement preparation or initiation (MI¼ 0–2, TauMI B0–1),
but insensitive to increased movement during locomotion
(asymptotic; MI¼ 2–8; dashed purple line, Fig. 2d,e).

By exploiting our ability to simultaneously measure dVm and
dSSp changes in proximal dendritic recordings during locomo-
tion (Fig. 2a), we found that movement-related dVm changes
strongly correlated with the magnitude and direction (that is,
increase versus decrease) of SSp firing rate changes (n¼ 13 cells
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Figure 1 | Bidirectional Purkinje cell SSp modulation during locomotion. (a) Schematic showing feedforward circuitry of the cerebellum. DCN, deep

cerebellar nuclei; GCs, granule cells; PC, Purkinje cell; PFs, parallel fibres; MFs, mossy fibres. (b) Feedforward input models underpinning locomotion-

dependent bidirectional PC simple spike (SSp) modulation. exc, excitation; freq., frequency; inh, inhibition. (c) Recording configuration in awake mice where

locomotion was captured using digital video. (d) Intracellular biocytin labelling of a PC via the recording electrode. Scale bar, 30 mm. GCL, granule cell layer;

PCL, Purkinje cell layer; ML, molecular layer. (e) Somatic voltage recordings, spike rate histograms and associated motion index values (MI; dark grey) from

two PCs during quiet wakefulness and voluntary locomotion (blue). Dashed red line denotes average firing rate during quiet wakefulness. (f) Purkinje cell

quiet wakefulness SSp firing rate (Qw) as a function of locomotion-related SSp firing rate (Loc, n¼ 38 cells, N¼ 33 mice). Symbols represent individual PCs

and dotted line represents unity. (g) Average change in PC SSp firing rate during quiet wakefulness (Qw) and locomotion (Loc; n¼ 38 cells, N¼ 33 mice).

(h) Average change in PC SSp firing rate as a function of increasing movement. Grey lines represent exponential fits to the data in individual cells, solid

purple lines represent PCs that increase/decrease their firing rates relative to the magnitude of movement and dashed purple lines represent PCs that are

highly sensitive only to small movements (n¼ 38 cells, N¼ 33 mice). a.u., arbitrary units. (i) Distribution of TauMI values taken from the exponential fits

shown in h. (j) Representative example of a climbing fibre-mediated complex spike (CS). (k) Purkinje cell quiet wakefulness (Qw) CS firing rate as a

function of locomotion-related CS firing rate (n¼ 38 cells, N¼ 33 mice). Symbols represent individual PCs and dotted line represents unity. (l) Average

change in PC CS firing rate during quiet wakefulness (Qw) and locomotion (Loc; n¼ 38 cells, N¼ 33 mice). (m) Distribution of CS versus SSp firing rate

correlation coefficients during quiet wakefulness (Qw) and locomotion (Loc). Black circles denote PCs that displayed reciprocal firing rates during quiet

wakefulness or locomotion (n¼ 18/38 cells, N¼ 33 mice).
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from N¼ 11 mice, r¼ 0.71, P¼ 0.007), where cells that displayed
a dendritic hyperpolarization were associated with a reduction in
dSSp firing rate and vice versa (Fig. 2f). Changes in dendritic
calcium spike activity mirrored changes in the CS activity
measured at the soma (compare Figs 1k and 2g). Together, our
results show that relatively small changes in PC dVm (0–5 mV)
linearly transform into robust bidirectional changes in somatic
SSp firing rates during locomotion, and that intracellular
dendritic and somatic recordings in vivo provide a powerful
method to investigate how FFE and FFI shape PC output during
motor behaviour.

Enhanced GC activity during locomotion. To investigate the
extent to which feedforward excitatory circuits are engaged
during self-paced locomotion, we recorded from individual GCs
along the apex of lobule V (Fig. 3a). GCs were identified based on
their electrophysiological properties22,23,29–31 and depth from the
pial surface (4350 mm; Supplementary Table 3). At rest, GCs
displayed low baseline firing rates (0.14±0.08 Hz, n¼ 13 cells
from N¼ 13 mice), which markedly increased after locomotion
onset (10.22±4.22 Hz, n¼ 13, Po0.0001; Fig. 3b,c), consistent
with previous findings22. The frequency and pattern of move-

ment-evoked spiking in individual GCs were highly variable, with
some GCs displaying continuous high-frequency firing, while
others displayed intermittent spike bursts (Fig. 3d; Supplementary
Table 4). The population-based response of GCs appeared as a
gradual increase in spike rate during locomotion onset, rising to a
peak around 2 s—potentially reflecting the relatively slow
depolarization to threshold in some GCs—followed by sust-
ained firing for the duration of the movement bout. The
consistent increase in GC firing rates (see also ref. 22) suggests
that GC activity alone cannot drive bidirectional dVm or SSp
firing rate changes in PCs during locomotion (Fig. 1b). Although
we undersampled the GC population, our results are consistent
with GCs providing strong, sustained feedforward excitatory
input to downstream PCs and MLIs during self-paced
locomotion.

GCs drive interneuron firing during locomotion. To assess the
recruitment of feedforward inhibitory circuits by GCs, we made
voltage- and current-clamp recordings from MLIs during quiet
wakefulness and voluntary locomotion (Fig. 3e–j). As with GCs,
MLIs were identified based on their electrophysiological proper-
ties and depth from the pial surface (range 126–296 mm;
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depict smoothed average Vm. (c) Average PC dVm changes (DdVm) during self-paced locomotion (n¼ 19 cells, N¼ 17 mice). Black filled circles depict dVm
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the exponential fits shown in d. (f) Relationship between DdVm and percentage change in dSSp firing rate during self-paced, locomotion (n¼ 13 cells, N¼ 11

mice). Filled symbols represent the data from individual PCs and the solid line is a linear fit to the data r¼0.71, Po0.01. (g) Average dendritic calcium spike

frequency during quiet wakefulness and locomotion (n¼ 19 cells, N¼ 17 mice). Filled circles represent individual cells and dotted line represents unity.
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Supplementary Table 5)30,32. During quiet wakefulness,
interneurons (INs) received high-frequency barrages of
excitatory input where the mean amplitude and frequency of
parallel fibre inputs were 52.7±10.2 pA and 191.5±23.9 Hz,
respectively, with an average 20–80% rise time of 0.28±0.02 ms
(n¼ 7 neurons from N¼ 6 mice; Fig. 3f; Supplementary Fig. 6).
Given the low rate of GC activity in vivo (Fig. 3b–d)22,29–31, INs
likely receive high rates of spontaneous action potential-
independent input or low frequency input from a large
population of GCs even during periods of rest. Although we
did not test the contribution of climbing fibres directly32,33, it is
possible that climbing fibres contribute to the basal excitatory
postsynaptic current (EPSC) rate and recruitment of FFI34,35.
During periods of locomotion, the phasic charge transfer of
EPSCs—a compound measure of EPSC amplitude and frequency
(Methods)—increased in all cells (Qw¼ 0.29±0.05,
Loc¼ 0.72±0.09, Po1.0� 10� 3, n¼ 7 neurons from N¼ 6
mice; Fig. 3g) and was highly sensitive to changes in the
magnitude of movement (Pearson correlation coefficient
0.51±0.03, n¼ 7), where locomotion onset triggered a
sustained increase in charge that co-varied with changes in MI
(Fig. 3h; Supplementary Figs 4 and 6).

We next investigated how increased parallel fibre input
transformed into behaviourally relevant output spike patterns in
MLIs. We found that all MLIs increased their firing rates during
movement, rising from an average of 20 Hz during quiet
wakefulness to B60 Hz during locomotion (quiet wakefulness
19.8±4.2 Hz, locomotion 60.5±5.7, n¼ 13 neurons from N¼ 13
mice, P¼ 1� 10� 4; Fig. 3j,k). Similar to changes in EPSC charge
transfer, MLI firing rates were highly sensitive to changes in
movement (Pearson’s correlation coefficient 0.71±0.04, n¼ 13),
with locomotion triggering a sustained increase in firing that co-
varied with changes in MI (Fig. 3j–l; Supplementary Figs 4 and 7).
The distribution of charge/firing rate versus MI Tau values in
MLI (Fig. 3h,l; Supplementary Figs 6 and 7) were similar to those
observed for firing rate changes versus MI in PCs (Fig. 1),
suggesting that GC activity likely drives the differential sensitivity
to movement in both types of molecular layer neurons.
Importantly, peak and steady-state movement-related firing rates
of MLIs were highly variable across individual MLIs, generating
variable, but sustained, FFI to downstream PCs.

To explore the relationship between GC input and MLI spike
output, we generated an input–output curve by plotting the
average charge transfer versus firing rate for each binned MI
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Figure 3 | Recruitment of feedforward excitatory and inhibitory circuits during locomotion. (a) Schematic showing GC current (I)-clamp recording
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wakefulness (Qw) and locomotion (Loc; blue shading; n¼ 13 cells, N¼ 13 mice). (e) Schematic showing MLI voltage (V)-clamp recording configuration.

(f) Representative current trace recorded at � 70 mV (upper panel) from a MLI during quiet wakefulness and locomotion (blue shading). (g) Average EPSC

charge transfer recorded during quiet wakefulness (Qw) and locomotion (Loc). Grey symbols represent data from individual MLIs, black symbols represent

mean±s.e.m., **Po0.01 two-tailed t-test (n¼ 7 cells, N¼ 6 mice). (h) Average charge transfer as a function of increasing movement (motion index). Thin

grey lines represent exponential fits to the data in individual cells, black line represents the average and pink shading the s.d. of the mean (n¼ 7 cells, N¼6

mice). (i) Schematic showing MLI I-clamp recording configuration. a.u., arbitrary units. (j) Representative voltage trace recorded from a MLI during quiet

wakefulness and locomotion (blue shading). (k) Average firing rate of MLIs during quiet wakefulness (Qw) and locomotion (Loc; n¼ 13 cells, N¼ 13 mice).

Grey symbols and connecting lines represent the data from individual MLIs, and black symbols represent mean±s.e.m. **Po0.01 two-tailed t-tests.

(l) Average change in MLI firing rate as a function of increasing movement (motion index). Thin grey lines represent exponential fits to the data in

individual cells, black line represents the average across all cells and pink shading the s.d. of the mean (n¼ 13 cells, N¼ 13 mice). a.u., arbitrary units.
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value (200 ms bin size; that is, combining input and output data
from different populations of cells shown in Fig. 3h,l; Methods).
Consistent with in vitro and modelling predictions, we found that
MLIs encode locomotion-dependent changes in GC input with
linear changes in firing rate, with input and output rates being
highly variable across MLIs (EPSCs 0.53–1.17 pC, n¼ 7; spikes
32.0–95.8 Hz, n¼ 13) (Fig. 3e–l; Supplementary Fig. 7F).

Excitation–inhibition balance regulates PC dVm. To directly
investigate the balance between FFE and FFI in PCs, we combined
cell-selective optogenetic silencing of MLIs with intracellular
dendritic recordings from PCs. Archaerhodopsin 3.0 (Arch 3.0), a
light-activated proton pump36, was targeted to MLIs using a
Nos1Cre transgenic mouse line37,38 and viral-mediated gene
transfer (rAAV2-EF1a-DIO-eArch3.0-eYFP::Nos1Cre; Fig. 4a;
Supplementary Fig. 8). To assess the efficiency of Arch 3.0,
we performed whole-cell and cell-attached recordings from
MLIs and found that light activation (2–4 s pulses of
532 nm light) hyperpolarized the mean Vm (quiet wakefulness

DVm � 15.4±3.2 mV, n¼ 6 from N¼ 6 mice; locomotion DVm

� 4.3±2.3 mV, n¼ 3 from N¼ 3 mice), significantly reducing
MLI firing rates during locomotion (Loc: 70.1±10.5 Hz,
LocþArch: 14.8±5.6 Hz, n¼ 6 neurons from N¼ 6 mice,
P¼ 4.6� 10� 3; Fig. 4b–e). The onset and offset latencies of
Arch 3.0-mediated effects in MLIs were 17.0±8.3 and
14.8±10.6 ms, respectively. Although silencing MLIs during
quiet wakefulness induced a small but consistent rebound firing
after stimulus cessation (o300 ms), no significant rebound
activity was observed after Arch 3.0 activation during
locomotion (Fig. 4d). Moreover, light activation in the absence
of Arch 3.0 expression did not affect the firing frequency of MLIs
(Supplementary Fig. 8).

Blocking FFI revealed a strong depolarization and rightward
shift in PC dendritic Vm distributions—irrespective of whether
DdVm was depolarizing or hyperpolarizing in the absence of light
stimulation—and increased dSSp firing rates in all cells (n¼ 7
from N¼ 6 mice; Fig. 5a–c). The Arch 3.0-mediated effects on
dVm were only observed during light stimulation and returned to
baseline levels after stimulus cessation (Fig. 5d). These results
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Figure 4 | Arch 3.0-mediated silencing of molecular layer interneurons. (a) Low- and higher-magnification confocal images of parvalbumin (PV, red) and

eArch3.0-eYFP labelling (green) along the apex of lobule V of the cerebellar vermis. Parasagittal sections of lobule V (upper panel, scale bar, 100mm) were

cut 9 days post virus injection. Two injections (white electrodes, middle panel) were performed at anterior and posterior locations in the craniotomy to

ensure maximal viral infection across lobule V. Lower panels—higher-magnification images of lobule V highlighting the cell-selective expression of Arch 3.0

in MLIs (middle panels, scale bar, 50mm; bottom panels, scale bar, 20mm). (b) Example of light-evoked silencing of a MLI (green bar, 2 s pulse of 532 nm

light) during locomotion (blue shading). Note spikes have been truncated to improve visualization of the photo-induced hyperpolarization. (c) Average

firing rate of MLIs during locomotion (Loc), locomotion plus light activation (LocþArch) and after cessation of the light stimulus (Loc). Grey and green

symbols and connecting lines represent the data from individual MLIs, and black symbols represent mean±s.e.m.**Po0.01, ns, not significant, two-tailed

t-tests (n¼6 cells, N¼ 6 mice). (d) Normalized MLI firing frequency histogram (bin size¼ 100 ms) aligned to the onset and offset of 532 nm light

stimulation (green shading) during quiet wakefulness (grey left hand panels, n¼9 cells, N¼8 mice) and locomotion (blue right hand panels, n¼6 cells,

N¼ 6 mice). Solid red line depicts the mean frequency before light stimulation and dashed lines indicate 2� s.d. of the mean. (e) Mean percentage

suppression of MLI firing frequency after Arch 3.0 stimulation during quiet wakefulness (QwþArch, n¼ 9, N¼8 mice) and locomotion (LocþArch, n¼ 6,

N¼ 6 mice). Open circles represent the data from individual MLIs and bars represent mean±s.e.m., *Po0.05, two-tailed t-test. freq., frequency; Norm.,

normalization; supp., suppression.
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confirm that GCs provide unidirectional, sustained FFE to PCs that
alone cannot account for the bidirectional firing rate changes
observed during locomotion (Figs 1 and 5f,g). To estimate the
DdVm ratio (excitation/inhibition) in individual PC dendrites (see
Methods), we took advantage of the fact that PCs linearly
transform excitatory and inhibitory inputs to perform a simple
subtraction analysis24,39 taking into account the baseline excitatory
and inhibitory input to PCs during quiet wakefulness (see Methods;
Fig. 5d,e). We found that during locomotion, PCs received variable
levels of inhibitory input that counteracted the effects of FFE
to generate a range of DdVm ratios centred around unity
(excitation4inhibition¼DdVm ratio41, excitationoinhibition¼
DdVm ratioo1; Fig. 5h,i). These results suggest that the fine

balance between dendritic excitatory and inhibitory input provides
a robust cellular mechanism to generate bidirectional SSp firing rate
modulation during locomotion.

Excitation–inhibition ratio regulates cerebellar output. To
confirm that the observed changes in dVm directly influence PC
spike output (Fig. 5g), we made somatic recordings before
and after optogenetic silencing of MLIs (Fig. 6a). Blocking FFI
resulted in a consistent increase in SSp firing rates across
all PCs, irrespective of whether SSp firing rates were
enhanced or suppressed before light stimulation (n¼ 16 from
N¼ 14 mice; Fig. 6b). After cessation of the light stimulus SSp
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Figure 5 | Excitation–inhibition balance regulates Purkinje cell dVm. (a) Schematic showing MLI current (I)-clamp recording configuration during light

activation of Arch 3.0 (green, 532 nm). (b) dVm recordings from two PCs during quiet wakefulness, locomotion (blue) and locomotion during light

stimulation (green). (c) Normalized dVm distributions (from b) during quiet wakefulness (black), locomotion (blue) and locomotion plus light stimulation

(green). (d) Normalized PC dVm (bin size¼ 100 ms) aligned to the onset and offset of light stimulation (green) during quiet wakefulness (grey, n¼ 6 cells,

N¼ 6 mice) and locomotion (blue, n¼ 7 cells, N¼ 6 mice). Red line depicts mean dVm during quiet wakefulness±2� s.d. (e) Average DdVm after light

stimulation during quiet wakefulness (QwþArch, n¼ 6, N¼ 6 mice) and locomotion (LocþArch, n¼ 7, N¼ 6 mice). Circles represent the data from

individual MLIs and bars represent mean±s.e.m., *Po0.05, two-tailed t-test. (f) Average locomotion-related changes in dVm (DdVm) before (grey, Loc),

during (green, LocþArch) and after (grey, Loc) light stimulation. Connecting lines represent the data from individual PCs *Po0.05, ns, not significant, two-

tailed t-tests (n¼ 7 cells, N¼6 mice). (g) Relationship between DdVm and DdSSp frequency during locomotion in the presence (grey) and absence (green,

n¼4, N¼ 3 mice) of feedforward inhibition. Grey connecting lines represent the data from individual PCs and thick line is a linear fit to the data (r¼0.95,

Po0.01). (h) Estimated dendritic excitation/inhibition balance. Inhibitory effect on dVm was calculated using DdVm Loc� (DdVm LocþArch)þ (DdVm

QwþArch) (n¼ 7, N¼ 6 mice), effects of excitation alone were calculated using (DdVm LocþArch)� (DdVm QwþArch). Dotted line represents unity. (i)

Estimated ratio of effects of excitation ((DdVm LocþArch)� (DdVm QwþArch)) versus inhibition (DdVm Loc� (DdVm LocþArch)þ (DdVm QwþArch))

on DdVm during locomotion. Ratio was calculated using absolute values of DdVm change (n¼ 7, N¼ 6 mice). Norm., normalization.
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firing rates rapidly returned to levels observed before light
activation (Fig. 6c) and light activation in the absence of
Arch 3.0 expression did not affect the SSp firing frequency in
PCs (Supplementary Fig. 8). Blocking inhibition also incre-
ased CS firing rates during both quiet wakefulness and

locomotion (Supplementary Tables 6 and 7), consistent with
enhanced SSp firing rates suppressing deep cerebellar nuclei-
mediated inhibition of inferior olive activity (that is, disinhibi-
tion of olivary neurons leading to enhanced climbing fibre
activity)40,41.
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To estimate the DSSp firing rate ratio (excitation/inhibition) in
individual PCs (see Methods), we again took advantage of the fact
that PCs linearly transform excitatory and inhibitory inputs to
perform a simple subtraction analysis24,39. We found that DSSp
firing rate ratios were centred around unity, mirroring the DdVm

ratios recorded in PC dendrites, and were not correlated with the
baseline firing rate during quiet wakefulness42 (Fig. 6d–g). Thus,
subtle changes in the balance between dendritic excitation and
inhibition can generate robust, bidirectional changes in somatic
SSp output during locomotion.

As expected, perturbing the excitation–inhibition balance by
blocking FFI significantly decreased the coefficient of variation
(CV) of interspike intervals in the majority of PCs, irrespective of
whether CV changes were positive or negative in the absence of
light stimulation (CV: Qw 0.53±0.03; Loc 0.66±0.05, P¼ 5
� 10� 3; LocþArch 0.32±0.02, P¼ 1� 10� 4; n¼ 16 cells from
N¼ 14 mice; Fig. 6h). To further examine how changes in
excitation–inhibition affects the temporal pattern of PC SSp
firing, we applied an analysis method termed local variability
accounting for refractoriness (LvR; see Methods), which isolates
the instantaneous firing regularity or irregularity of a neuron,
independently of spike rate fluctuations43. Using this metric, we
isolated changes in the temporal structure of PC spiking from
rate-based fluctuations during behaviour. We found that
locomotion increased the dispersion of LvR values—measured
as the s.d. of the LvR distribution across PCs—when compared
with quiet wakefulness (LvR s.d. Qw 55.4±8.2� 10� 3, Loc
78.5±7.5� 10� 3, n¼ 54 cells from N¼ 47 mice, P¼ 2� 10� 3).
The widening of the LvR distribution reflected an increase in the
number of longer duration interspike intervals (ISIs) and
irregularity of firing across the PC population. Blocking FFI
produced a clear leftward shift in the LvR distribution and a
reduction in the dispersion of LvR values (LvR s.d. Loc
78.5±7.5� 10� 3, LocþArch 18.7±3.8� 10� 3, Po1.0� 10� 8;
Fig. 6i,j). To assess whether increased inhibitory input generated
longer ISIs during locomotion, we plotted ISI length (ms) as a
function of Vm distance to threshold (mV) for each ISI. We found
that irrespective of the direction of the SSp firing rate change during
locomotion ISI distributions became wider with the appearance of
longer ISIs with more hyperpolarized Vm (Supplementary Fig. 9).
Thus, locomotion-dependent modulation of the excitation–
inhibition ratio in PCs appears necessary not only for generating
bidirectional SSp modulation but also for enriching the repertoire of
behaviour-related SSp patterns.

But is bidirectional SSp modulation necessary for normal
locomotor control? Given that optogenetic silencing of MLIs
abolished bidirectional SSp modulation and increased SSp
regularity across the majority of PCs along the apex of lobule V
(150� 300mm craniotomy with an estimated light penetration
depth of B300 mm (ref. 44)), we investigated whether this
manipulation affected self-paced locomotion. Light stimulation
resulted in consistent changes in locomotor behaviour in B70%
of the mice tested (7/29 reacted to ‘light on’; 10/29 mice reacted to
‘light off’; 4/29 mice reacted to ‘light on’ and ‘light off’; 8/29 mice
did not show any behavioural response), consisting of a
slowdown or complete halt in locomotion after stimulation
onset (slowdown 31.0%, n¼ 9/29; stop 6.9%, n¼ 2/29) and offset
(slowdown 37.9%, n¼ 11/29; stop 10.3%, n¼ 3/29; Fig. 6k,l).
Light-evoked changes had an average onset latency of 161±23 ms
and offset latency of 111±24 ms. The observed behavioural
effects were similar in magnitude and duration to those evoked by
direct optogenetic stimulation of PCs using channelrhodopsin45,
suggesting that both manipulations disrupt the same downstream
motor-related pathways. Importantly, changes in locomotor
behaviour were not due to the nonspecific effects of light
stimulation, as mice did not react when stimulated in the absence
of Arch 3.0 expression (Supplementary Fig. 8). Together, our
findings suggest that the fine balance between dendritic excitation
and inhibition provides a sensitive ‘push-pull’ mechanism to
generate the bidirectional modulation of PC SSp output necessary
for normal locomotor behaviour.

Discussion
In this study, we investigated the cellular mechanisms under-
pinning locomotion-dependent bidirectional modulation of PC
SSp output by performing somatic and dendritic intracellular
recordings in vivo, optogenetic silencing of MLIs and quantitative
behavioural analysis. Our data reveal three main findings. First,
we show that GCs generate a sustained depolarization of PC
dendrites during locomotion, the effects of which are counter-
balanced by variable levels of inhibitory input from MLIs. Second,
we demonstrate that locomotion-dependent modulation of the
balance between excitation and inhibition generates depolarizing
or hyperpolarizing dendritic Vm changes that linearly transform
into bidirectional modulation of PC SSp output. Finally, we show
that perturbing the excitation–inhibition balance by optogenetic
silencing of MLIs abolishes bidirectional firing rate changes and

Figure 6 | Excitation–inhibition balance shapes Purkinje cell SSp output during locomotion. (a) Schematic showing PC somatic recording configuration

during light activation. (b) Cell-attached (upper) and whole-cell (lower) recordings from two PCs during quiet wakefulness, locomotion (blue) and

locomotion plus light stimulation (green). Asterisks denote complex spikes. (c) Normalized PC SSp frequency histogram (bin size¼ 100 ms) aligned to the

onset and offset of 532 nm light stimulation (green) during quiet wakefulness (grey, n¼ 16 cells, N¼ 14 mice) and locomotion (blue, n¼ 16 cells, N¼ 14

mice). Solid red line depicts mean frequency during quiet wakefulness±2� s.d. (d) Average change in PC SSp frequency after Arch 3.0 stimulation during

quiet wakefulness (QwþArch) and locomotion (LocþArch). Circles represent the data from individual PCs and bars represent mean±s.e.m., **Po0.01,

two-tailed t-test, (n¼ 16 cells, N¼ 14 mice). (e) Average DSSp frequency before (grey, Loc), during (green, LocþArch) and after (grey, Loc) light

stimulation. Connecting lines represent the data from individual PCs, **Po0.01, ns, not significant, two-tailed t-tests (n¼ 16 cells, N¼ 14 mice).

(f) Estimated effects of excitation and inhibition on PC SSp output. Inhibitory effect on SSp firing rate was calculated using DSSp Loc� (DSSp

LocþArch)þ (DSSp QwþArch) (n¼ 16, N¼ 14 mice), while the effects of excitation alone was calculated using (DSSp LocþArch)� (DSSp QwþArch).

Red and blue circles represent PCs with high (465 Hz) and low (o65 Hz) quiet wakefulness firing rates, respectively. Dotted line represents unity.

(g) Ratio of effects of excitation ((DSSp LocþArch)� (DSSp QwþArch)) versus inhibition (DSSp Loc� (DSSp LocþArch)þ (DSSp QwþArch)) on

DSSp firing rate during locomotion. Ratio was calculated using absolute values of DSSp change and DdVm ratios were taken from Fig. 5 for comparison.

(h) Average change in the CV of PC SSp inter-event intervals (CVISIs_SSp) before (grey, Loc), during (green, LocþArch) and after (grey, Loc) light

stimulation. Connecting lines represent data from individual PCs **Po0.01, ns, not significant, two-tailed t-tests (n¼ 16 cells, N¼ 14 mice).

(i,j) Distribution of PC instantaneous firing regularity (LvR, i) and LvR s.d. (j) during quiet wakefulness (black, Qw, n¼ 54 cells, N¼47 mice) and during

locomotion before (blue, Loc, n¼ 54 cells, N¼47 mice), and after light-evoked silencing of MLIs (green, LocþArch, n¼ 16 cells, N¼ 14 mice). *Po0.05,

**Po0.01, two-tailed t-tests. (k) Normalized motion index (MI) aligned to the onset (left) and offset (right) of light stimulation (green). Grey traces

represent the data from individual cells and black line represents smoothed average (n¼ 11 and 14, respectively, N¼ 21 mice). (l) Relative distributions of

mice displaying no change, slowing or a complete halt in locomotion after onset (Light On) and offset (Light Off) of light stimulation (n¼ 29, N¼ 29 mice).
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enhances the rate and regularity of SSps leading to disrupted
locomotor function.

To directly investigate how the dendritic excitation–inhibition
balance shapes PC SSp output during motor behaviour, we took
advantage of the fact that the somatodendritic structure of PCs,
with primary and secondary dendrites measuring B3–8 mm in
diameter, makes them amenable to intracellular recording in vivo.
By performing the first intracellular dendritic recordings from
PCs in awake behaving mice, we were able to simultaneously
monitor changes in dVm and dendritic spikelets—that is, passive
backpropagation of SSps from the soma to the dendrites—to
characterize PC input–output transformations during self-paced
locomotion. We found that the locomotion-dependent recruit-
ment of feedforward excitatory and inhibitory inputs generated
both depolarizing and hyperpolarizing changes in dVm that
linearly transformed into bidirectional modulation of PC SSp
output. The dVm changes measured in our recordings reflect the
dynamic, time-varying balance between excitation, inhibition and
powerful intrinsic conductances present in the dendrite6–9,46.
Experimental and modelling studies have suggested that
excitatory and inhibitory conductances exert a partial voltage-
clamp on the dendrite, where the dendritic membrane potential
remains close to the clamping voltage dictated by the excitation/
inhibition ratio. In this regard, subtle changes in either excitation
or inhibition can significantly alter the dendritic membrane
potential and firing rate of PCs18,19,46. Consistent with these
predictions, we show that a 2–3 mV change in PC dVm resulted in
a 50–100% change in SSp firing rate when measured in the
dendrite (dSSps) or soma (SSps). Disrupting the excitation–
inhibition balance by blocking FFI increased the magnitude of the
DdVm and SSp firing rate change without affecting the linearity of
the relationship, consistent with PCs using a simple linear
summation algorithm to integrate synaptic inputs and regulate
SSp output during locomotion24,39. Although our results describe
the excitation/inhibition balance in terms of direct feedforward
input to the dendrites, basket cell inhibition and ascending GC
axon inputs onto the soma could in principle influence dVm

changes via backpropagation into the dendrites21,47–49.
Unfortunately, due to technical reasons, we were unable to
differentiate between the effects of stellate cell versus basket cell
inputs, or GC ascending versus parallel fibre inputs on PC input-
output transformations. Although our findings provide the first
detailed description of how dendritic excitation and inhibition
combine to shape PC Vm dynamics during motor behaviour, SSp
output involves complex interactions between afferent synaptic
input and large voltage-dependent conductances in the soma and
dendrites6–9,46; therefore, further work will be necessary to
elucidate the role of intrinsic voltage-dependent conductances in
regulating PC output during locomotion.

A signature of PC population activity during locomotion is the
bidirectional modulation of SSp firing rates1–5. During loco-
motion, PCs display enhanced or suppressed activity, suggesting
that sensorimotor information can equally be encoded by an
increase or decrease in SSp firing rate. In the sagittal orientation,
PCs receive strong excitation from GCs positioned medially and
pure inhibition from GCs positioned 4300mm lateral24,50, thus
providing an anatomical substrate for the bidirectional
modulation of PC activity during behaviour. To test which of
our three simple input models could explain bidirectional
SSp modulation during self-paced locomotion (Fig. 1), we
examined behaviour-related activity along the GC–PC and
GC–interneuron–PC pathways. At rest, PCs and MLIs receive a
constant barrage of GC input that in principle could be
bidirectionally modulated if subsets of GCs increased their
firing rates, while others reduced their output. Given the high
rate of convergence of GC inputs to downstream neurons, a slight

reduction in individual firing rates could result in a significant
reduction in FFE and firing rates of PCs and MLIs. However, our
GC and PC dendritic recordings clearly show that as a population
GCs provide sustained FFE during locomotion5,22, discounting
input ‘model 1’ (that is, bidirectional modulation of excitation
with enhanced inhibition). Since all MLIs displayed an increase in
firing rate during locomotion, local feedback inhibition in the
molecular layer appears insufficient to dampen GC-mediated FFE
of MLIs. The absence of reciprocal MLI firing rates during
locomotion suggests that input ‘model 2’ (that is, enhanced
excitation with bidirectional modulation of inhibition) is unlikely
to underpin the changes in PC dVm. Instead, our data are
consistent with feedforward input ‘model 3’ in which PCs receive
both enhanced dendritic excitation and inhibition during
locomotion, the balance of which contributes to a sensitive
‘push-pull’ mechanism that drives bidirectional modulation of PC
SSp output (Fig. 1).

One unexpected observation was that GCs displayed a B70-
fold increase in spiking activity during locomotion that
transformed into a modest twofold increase in charge transfer
in MLIs. Although the reasons for this disparity remain unclear,
one possible explanation is that MLIs receive a high rate of
miniature (action potential independent) parallel fibre EPSCs
during quiet wakefulness—that would be unaffected by enhanced
GC activity during locomotion—and action potential-dependent
input from a limited number of GCs. Alternatively, high-
frequency burst firing of parallel fibres during locomotion can
induce short-term presynaptic plasticity mediated by GABAA,
GABAB and mGluR4 receptors, leading to a significant reduction
in parallel fibre synaptic transmission51,52. Further studies will be
required to investigate how parallel fibre plasticity affects the
fidelity of information transmission during behaviour.

Cerebellar PCs generate two different types of spikes: CSs
reflecting activation of climbing fibre inputs and SSps reflecting
intrinsic spike generation that can be modulated by synaptic
input. The rate of SSp and CS activity is in general reciprocal in
nature—that is, when the SSp frequency increases CS rates
decrease and vice versa13,53,54. Until recently, the network
mechanism underpinning SSp and CS reciprocity remained
unresolved due to the difficulty of modulating rhythmic CS
input without a concomitant effect on SSp firing rates. By
selectively rerouting climbing fibres from an ipsilateral projection
to a contralateral projection, Badura et al.34 were able to show
that climbing fibres drive reciprocal SSp–CS firing rates via
recruitment of FFI from MLIs. Accordingly, our data demonstrate
that a significant proportion of PCs display SSp–CS reciprocity
during quiet wakefulness and self-paced locomotion (Fig. 1). By
abolishing FFI, GC excitation dominates, increasing PC SSp rates
(Fig. 6). This in turn suppresses deep cerebellar nuclei-mediated
inhibition of inferior olive activity (that is, disinhibition of olivary
neurons), leading to a coincident increase in SSp and CS firing
rates (Supplementary Tables 6 and 7)55. Thus, it will be of interest
to assess the extent to which PF- versus CF-mediated recruitment
of FFI regulates PC SSp firing rates during quiet wakefulness and
locomotion.

But are bidirectional SSp firing rate changes necessary for
normal locomotor behaviour? Extracellular recordings from PCs
have demonstrated reciprocal firing rate changes in cats trained to
perform constant speed locomotion on a linear treadmill, where
changes in firing rate correlate with different phases of the step
cycle1. More recently, optogenetic activation of PC ensembles has
been shown to orchestrate complex multi-joint movements in
mice, where light stimulation evoked a slowing or complete arrest
of self-paced locomotion45. The fact that bidirectional changes
in dendritic Vm generated reciprocal PC firing rates, which
when abolished, disrupted locomotor function, confirm their
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importance for normal motor control. Silencing MLIs evoked
strong behavioural responses that were time-locked to both the
onset and offset of optogenetic light stimulation, consistent
with increased PC activity suppressing deep cerebellar nuclei
(DCN) output during light activation followed by a rebound
excitation of DCN neurons after stimulus cessation45,56–58.
Although our findings provide a mechanistic link between the
dendritic excitation–inhibition balance in PCs, bidirectional SSp
modulation and normal locomotor function, further experiments
will be required to understand how time-varying output from the
cerebellar cortex—via the DCN—engages downstream motor
areas to coordinate simple and complex cerebellum-dependent
motor behaviours. Given the consistent cytoarchitecture across
the cerebellar cortex, our findings may generalize to other areas of
the cerebellum where differential recruitment of feedforward
excitatory and inhibitory circuits may provide a common
dynamic ‘push-pull’ mechanism to shape PC input–output
transformations during motor behaviour.

Methods
Animal care and housing. Male 6–10-week-old, C57BL/6 or Nos1Cre37 mice, two
to six animals per cage, were housed on a reversed 12 h light/dark cycle. Food and
water were available ad libitum. All animal procedures were approved by the
University of Edinburgh local ethical review committee and performed under
licence from the UK Home Office in accordance with the Animal (Scientific
Procedures) Act 1986.

Surgeries. To perform in vivo awake recordings, a small lightweight headplate
(0.75 g; www.DuguidLab.com) was attached to the skull under 1.5% isoflurane
anaesthesia using cyanoacrylate adhesive and dental acrylic. The headplate formed
a recording well that was 3 mm in diameter in which a craniotomy was performed
at least 24 h after recovery. The craniotomy (B150� 300mm) was positioned
directly above lobule V of the cerebellum (2.5 mm posterior to lambda, 0.75 mm
lateral to midline) and the dura was removed. The craniotomy was sealed with agar
(1.5%) and Kwik-Cast sealant (WPI, Europe), and mice were returned to the home
cage for B1 h to recover from anaesthesia before recording commenced.

In vivo electrophysiology. Mice were habituated to the head restraint and
experimental setup for 30–60 min before each recording session. Head-restrained
mice were free to run, walk or sit on the cylindrical treadmill. Current and voltage-
clamp recordings were performed at 50–300 mm from pial surface for MLIs,
250–350 mm for PCs and 4350 mm for GCs using a Multiclamp 700B amplifier
(Molecular Devices, USA). The data were filtered at 6–10 kHz and digitized at
10–20 kHz using PClamp 10 software in conjunction with a DigiData 1440 DAC
(Molecular Devices). No bias current was injected during recordings and the
membrane potential was not corrected for junction potential. Resting membrane
potentials were recorded immediately after ‘break-in’ and series resistances ranged
between 20 and 50 MO. Series resistances were compensated by B50% when
recording EPSC in MLIs. In vivo external solution contained (in mM) 150 NaCl,
2.5 KCl, 10 HEPES, 1.5 CaCl2 and 1 MgCl2, (pH 7.3). Patch pipettes (5–8 MO)
were filled with (in mM) 135 K-gluconate, 7 KCl, 10 HEPES, 10 sodium phos-
phocreatine, 2 MgATP, 2 Na2ATP and 0.5 Na2GTP (pH 7.2, 285–295 mOsm), and
1–2 mg ml� 1 biocytin was added before recording. Excitatory synaptic input was
measured in MLIs by voltage clamping at � 70 mV. At the end of the recording,
mice were transcardially perfused with 4% paraformaldehyde and the brain
removed for post hoc immunohistochemistry.

Virus injection and optogenetic stimulation. Nos1Cre mice37 were anaesthetized
with 1.5% isoflurane, and two burr holes (50� 50mm) were created 400–700 mm
apart above lobule V (2.5 mm posterior to lambda, 0.75 mm lateral to midline).
rAAV2-EF1a-DIO-eArch3.0-eYFP (UNC VectorCore; 300 nl per injection site) was
injected using a Picospritzer at a depth of 100–350 mm from the pial surface
through a pulled glass micropipette. After injection, mice were allowed to recover
for 8–10 days to ensure sufficient expression of Arch 3.0. Photostimulation of Arch
3.0 was achieved using a custom designed optic fibre dual lens coupling (1 mm
diameter; 0.48 numerical aperture; Doric lenses) and 532 nm, 200 mW single
wavelength laser (Laserlands, China). For Arch 3.0 activation, laser intensity was
70–80 mW mm� 2 when measured as the output from the lens. Given that the lens
housing was positioned B10 mm from the craniotomy and that the light had to
transition from air to solution then to brain, the actual irradiance 50–300 mm from
the pial surface will be significantly reduced. For technical reasons, we were unable
to directly measure irradiance in the molecular layer. To ensure that light
stimulation alone did not evoke cellular responses (that is, via heat-mediated
effects), control experiments were performed in Nos1Cre mice in the absence of

Arch 3.0 virus (Supplementary Fig.7). Mice were habituated to the head restraint
and experimental setup for 1 h before each recording session and the laser switched
on/off—while blocking the craniotomy with silicon sealant—to check for
behavioural responses. At the point that mice did not react to noises mimicking
experimental procedures or light stimulation, they were deemed fully habituated.
Laser stimulation was 3 s in duration during quiet wakefulness and was manually
controlled during self-paced locomotion. Light stimulation commenced B2–5 s
after locomotion onset and remained on for B2–4 s. Light-evoked changes in
locomotor behaviour were assessed by analysing the MI 500 ms before and
1,000 ms after the onset/offset of light stimulation. The threshold for light-evoked
behavioural responses was set at 42� the s.d. of the MI before the onset/offset of
light stimulation. If the MI decreased below our defined threshold but above the MI
levels observed during quite wakefulness, then the behavioural change was
classified as ‘slowing down’. If, however, the MI decreased to levels similar to that
observed during quite wakefulness and lasted for 4200 ms, this signified a
complete halt in locomotion (stop).

Immunohistochemistry. After transcardial perfusion, individual brains were post-
fixed overnight in 4% paraformaldehyde and parasagittal sections (60mm) were cut
using a vibratome (Leica VT1000S). For reconstruction of neuronal morphology,
sections were first incubated in blocking solution for 2 h (10% normal goat serum,
0.5% Triton X-100 in 0.01 M PBS), and then incubated overnight in streptavidin
AlexaFluor-488 or 568 (1:1,000, Molecular Probes). To verify selective expression
of Arch 3.0 in MLIs, sections from transfected brains were first incubated in
blocking solution for 2 h, and then incubated in mouse anti-parvalbumin (1:2000,
Swant, Switzerland) primary and anti-mouse AlexaFluor-568 secondary antibodies
(1:1,000, Molecular Probes). All antibodies were diluted in carrier solution (0.01 M
PBS, 2% normal goat serum and 0.5% Triton X-100) and incubated overnight at
room temperature. Slices were mounted and z stacks acquired using a Nikon A1R
FLIM confocal microscope (� 20 and � 40 objectives; Nikon, Europe). Quantifi-
cation of Arch 3.0 and parvalbumin co-localization was achieved by manual
counting of cells in 1 mm optical sections focused along the apex of lobule V (n¼ 16
slices from N¼ 4 mice).

Motion index and locomotion. All movements (positioning, grooming and
locomotion) were captured using an elevated, front-mounted digital camera
(60 f.p.s.) synchronized with each electrophysiological recording. An optical
encoder was used to capture movement of the treadmill and to calculate the speed
of locomotion. A motion index (MI) was calculated from successive video frames:
MIf¼SN

i¼ 1(cfþ 1,i� cf,i)2, where cf,i is the grayscale level of the pixel i of the region
of interest (ROI) in frame f. In each recording, we selected a full frame ROI that
included the trunk, face, forelimbs and hindlimbs from the front elevation view.
Given that MI was calculated as pixel changes during successive video frames, this
provided a sensitive measure to detect any movement during movement pre-
paration, onset or steady-state locomotion. Locomotion was defined as periods of
walking or running that lasted for 43 s checked by visual inspection of each video.
The threshold for locomotion onset was set at 2� the s.d. of the MI during periods
of quiet wakefulness. The average length of each bout of locomotion was
11.9±0.6 s (range: 4–28.5 s). Cells recorded from mice that did not engage in self-
paced voluntary locomotion were excluded from the comparison analysis of quiet
wakefulness versus locomotion but were used in describing the basic firing prop-
erties of each cell type.

Data analysis. Data analysis was performed with MatLab and custom-written
macros in Igor Pro 6 (Wavemetrics, USA). Input resistances were calculated from
current responses during 400 ms step voltage (� 20 mV) injections. Synaptic events
were detected using an amplitude threshold algorithm (TaroTools, custom-written
macro in Igor Pro 6), where the threshold for detection was set at 2� the s.d. of
the noise (typically the threshold was set at 10–15 pA for MLIs).

The location of dendritic recordings was estimated based on known depth of
the PC layer from cell-attached or whole-cell recordings in the same preparation.
Simple and CSs were detected automatically (TaroTools) and were manually
verified. Interspike intervals preceding and following CSs were removed from
SSps analysis and CSs were blanked when calculating dVm.

Charge transfer of MLIs was calculated as the time-integral of the current in a
20 ms sliding window after subtraction of the holding current. Baseline current was
estimated based on the lowest current amplitude minimum in each individual
trace. Membrane potential spike threshold was computed as the second or third
derivative of the voltage trace recorded in MLIs and PCs, respectively. Average
membrane potential was calculated after clipping spikes from threshold. The
interspike modal Vm of PCs was calculated from 1.77±0.12 ms after the peak of
each spike to the threshold of the following spike using a custom-written macro in
Igor Pro 6. Burst analysis of GCs was conducted using a custom-written macro
in Igor Pro 6, where bursts were defined as having at least three spikes with an
intra-bust interval of 30 ms or less. To estimate the correlation between firing
rate/charge transfer and locomotion Pearson correlation, coefficients were
calculated between frequency/charge and MI from the whole trace (90 s) using a
20 ms bin size.
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To investigate the SSp–CS firing rate reciprocity, we calculated the mean SSp
frequency during each CS interspike interval (that is, instantaneous CS frequency).
SSp frequency was plotted as a function of CS frequency and SSp–CS correlation
coefficients were defined by applying linear regression analysis. To explore the
relationship between firing rate/dVm or charge and MI in PCs and MLIs,
exponential functions were fitted in Igor Pro 6 (y0þAexp(- invTau * x) to the
binned (200 ms bin size) raw data of frequency/charge versus MI in individual cells
(Supplementary Fig. 4). Data values were normalized based on the minimum and
maximum value of each dataset.

To estimate the effect of FFI on the dVm, we subtracted the DdVm during
locomotion in the presence of light stimulation (DdVm LocþArch) from the DdVm

during locomotion (DdVm Loc), taking into account the effect of baseline excitation
during quiet wakefulness (DdVm QwþArch). Thus, the estimated effect of
inhibition during locomotion was calculated using the equation DdVm Loc� (DdVm

LocþArch)þ (DdVm QwþArch). Given that we did not record the effects of Arch
stimulation during Qw and Loc in each cell, we instead used an average DdVm

QwþArch value (2.04±0.48 mV, n¼ 6). Similarly, to estimate the effect of FFI on
the somatic firing rate of PCs, we adopted the same strategy as above using the
equation DSSp Loc� (DSSp LocþArch)þ (DSSp QwþArch). For this set of
experiments, the DSSp QwþArch for each individual cell was used. To estimate the
effect of excitation during locomotion, we subtracted the baseline excitatory
component (DdVm or DSSp QwþArch) from the DdVm or DSSp during
locomotion in the presence of light stimulation (that is, (DdVm or DSSp
LocþArch)� (DdVm or DSSpþArch)). The ratio of effects of excitation
(LocþArch)� (QwþArch) versus inhibition (Loc� (LocþArch)þ (QwþArch))
was calculated using absolute values of DdVm or DSSp change (that is, negative
values were converted to positive).

The firing regularity/irregularity of PCs (LvR) was defined by the equation:

LvR ¼ 3
n� 1

Xn� 1

i¼1

1� 4IiIiþ 1

Ii þ Iiþ 1ð Þ2
� �

1þ 4R
Ii þ Iiþ 1

� �

where Ii and Iiþ 1 are the ith and iþ 1th ISIs, and n is the number of ISIs. R is a
refractoriness constant characteristic to each cell type (R was set at 3 ms for PCs)43.
Error bars indicate mean±s.e.m. unless stated otherwise. To determine statistical
significance, two-tailed t-tests were used if the distribution of the samples passed
the normality test. For GC spike frequency analysis, a Wilcoxon matched-pairs
signed-rank non-parametric test was used. Po0.05 was considered significant
(*Po0.05, **Po0.01).

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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