653 research outputs found

    The Response of Citrate Functionalized Gold and Silver Nanoparticles to the Addition of Heavy Metal Ions

    Get PDF
    Hypothesis Citrate functionalised gold nanoparticles (AuNPs) have been shown to be effective heavy metal sensors, as their optical spectra quantitatively shifts upon metal-citrate interaction. The speciation and molecular orientation of citrate molecules absorbed on the surfaces of bulk materials are found to be dependent on the substrate material used. It is expected that substituting gold for another nanomaterial should give the citrate molecules at the surface different speciation and molecular orientation, thus providing different citrate/metal interactions and responses. Experimental Citrate functionalised AuNP, and AgNP solutions were synthesised for comparison, and characterised before and after the addition of heavy metal ions. This study concentrated on the molecular interactions of the citrate molecules with the nanomaterial surface and the metal ions in solution. Computational simulations into these interactions were also carried out as a comparison. Findings The citrate speciation for the AuNPs and AgNPs was significantly different, showing single and double carboxylate coordinated molecules respectively. There were also differences in the heavy metal/citrate interaction. Notably, Pb2+ ions produced a rapid coagulation of the AuNPs which was not observed when using AgNPs, demonstrating that the noble metal nanomaterial used has an effect on the nature of the heavy metal/citrate bonding interactions

    Highly sensitive SERS detection of Pb2+ ions in aqueous media using citrate functionalised gold nanoparticles

    Get PDF
    Citrate functionalised gold nanoparticles (AuNPs) display strong surface enhanced Raman scattering, which can be used for surface enhanced Raman spectroscopy (SERS). The specific and strong interaction between the heavy metal ions and surface-bound citrate molecules lead to a sensing application for the detection of Pb2+ ions. Herein we report a citrate functionalised gold nanoparticle (AuNP) surface enhanced Raman spectroscopy (SERS) based sensor, employing the metal-affinity properties of the citrate molecule to detect Pb2+ ions. The Pb2+ ions interact with the citrate molecules via their carboxylate and hydroxyl groups altering the molecular spectra pertaining to the νas(COO−), νs(COO−) and ν(COH) bands. The ν(COH) band was used for the determination of the Pb2+ ion concentration. It decreased upon reducing the ion concentration and was found to be linear between 50 ng/L and 1000 ng/L with a 0.9982 correlation coefficient (R2) value. This method also showed good recovery and relative standard deviation (RSD) values

    Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy

    Get PDF
    We introduce UnaG as a green-to-dark photoswitching fluorescent protein capable of high-quality super-resolution imaging with photon numbers equivalent to the brightest photoswitchable red protein. UnaG only fluoresces upon binding of a fluorogenic metabolite, bilirubin, enabling UV-free reversible photoswitching with easily controllable kinetics and low background under Epi illumination. The on- and off-switching rates are controlled by the concentration of the ligand and the excitation light intensity, respectively, where the dissolved oxygen also promotes the off-switching. The photo-oxidation reaction mechanism of bilirubin in UnaG suggests that the lack of ligand-protein covalent bond allows the oxidized ligand to detach from the protein, emptying the binding cavity for rebinding to a fresh ligand molecule. We demonstrate super-resolution single-molecule localization imaging of various subcellular structures genetically encoded with UnaG, which enables facile labeling and simultaneous multicolor imaging of live cells. UnaG has the promise of becoming a default protein for high-performance super-resolution imaging. Photoconvertible proteins occupy two color channels thereby limiting multicolour localisation microscopy applications. Here the authors present UnaG, a new green-to-dark photoswitching fluorescent protein for super-resolution imaging, whose activation is based on a noncovalent binding with bilirubin

    Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids

    Get PDF
    The aim of the study was to assess the total energy expenditure (TEE), resting energy expenditure (REE) and physical activity level (PAL) in home-living cachectic patients with advanced pancreatic cancer. The influence of an energy and protein dense oral supplement either enriched with or without the n-3 fatty acid eicosapentaenoic acid (EPA) and administered over an 8-week period was also determined. In total, 24 patients were studied at baseline. The total energy expenditure was measured using doubly labelled water and REE determined by indirect calorimetry. Patients were studied at baseline and then randomised to either oral nutritional supplement. Measurements were repeated at 8 weeks. At baseline, REE was increased compared with predicted values for healthy individuals (1387(42) vs 1268(32) kcal day-1, P=0.001), but TEE (1732(82) vs 1903(48) kcal day-1, P=0.023) and PAL (1.24(0.04) vs 1.50) were reduced. After 8 weeks, the REE, TEE and PAL of patients who received the control supplement did not change significantly. In contrast, although REE did not change, TEE and PAL increased significantly in those who received the n-3 (EPA) enriched supplement. In summary, patients with advanced pancreatic cancer were hypermetabolic. However, TEE was reduced and this was secondary to a reduction in physical activity. The control energy and protein dense oral supplement did not influence the physical activity component of TEE. In contrast, administration of the supplement enriched with EPA was associated with an increase in physical activity, which may reflect improved quality of life

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    Heparanase Levels Are Elevated in the Urine and Plasma of Type 2 Diabetes Patients and Associate with Blood Glucose Levels

    Get PDF
    Heparanase is an endoglycosidase that specifically cleaves heparan sulfate side chains of heparan sulfate proteoglycans. Utilizing an ELISA method capable of detection and quantification of heparanase, we examined heparanase levels in the plasma and urine of a cohort of 29 patients diagnosed with type 2 diabetes mellitus (T2DM), 14 T2DM patients who underwent kidney transplantation, and 47 healthy volunteers. We provide evidence that heparanase levels in the urine of T2DM patients are markedly elevated compared to healthy controls (1162±181 vs. 156±29.6 pg/ml for T2DM and healthy controls, respectively), increase that is statistically highly significant (P<0.0001). Notably, heparanase levels were appreciably decreased in the urine of T2DM patients who underwent kidney transplantation, albeit remained still higher than healthy individuals (P<0.0001). Increased heparanase levels were also found in the plasma of T2DM patients. Importantly, urine heparanase was associated with elevated blood glucose levels, implying that glucose mediates heparanase upregulation and secretion into the urine and blood. Utilizing an in vitro system, we show that insulin stimulates heparanase secretion by kidney 293 cells, and even higher secretion is observed when insulin is added to cells maintained under high glucose conditions. These results provide evidence for a significant involvement of heparanase in diabetic complications

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change

    3D Multicolor Super-Resolution Imaging Offers Improved Accuracy in Neuron Tracing

    Get PDF
    The connectivity among neurons holds the key to understanding brain function. Mapping neural connectivity in brain circuits requires imaging techniques with high spatial resolution to facilitate neuron tracing and high molecular specificity to mark different cellular and molecular populations. Here, we tested a three-dimensional (3D), multicolor super-resolution imaging method, stochastic optical reconstruction microscopy (STORM), for tracing neural connectivity using cultured hippocampal neurons obtained from wild-type neonatal rat embryos as a model system. Using a membrane specific labeling approach that improves labeling density compared to cytoplasmic labeling, we imaged neural processes at 44 nm 2D and 116 nm 3D resolution as determined by considering both the localization precision of the fluorescent probes and the Nyquist criterion based on label density. Comparison with confocal images showed that, with the currently achieved resolution, we could distinguish and trace substantially more neuronal processes in the super-resolution images. The accuracy of tracing was further improved by using multicolor super-resolution imaging. The resolution obtained here was largely limited by the label density and not by the localization precision of the fluorescent probes. Therefore, higher image resolution, and thus higher tracing accuracy, can in principle be achieved by further improving the label density

    Crystal structure of a tripartite complex between C3dg, C-terminal domains of factor H and OspE of Borrelia burgdorferi

    Get PDF
    Complement is an important part of innate immunity. The alternative pathway of complement is activated when the main opsonin, C3b coats non-protected surfaces leading to opsonisation, phagocytosis and cell lysis. The alternative pathway is tightly controlled to prevent autoactivation towards host cells. The main regulator of the alternative pathway is factor H (FH), a soluble glycoprotein that terminates complement activation in multiple ways. FH recognizes host cell surfaces via domains 19–20 (FH19-20). All microbes including Borrelia burgdorferi, the causative agent of Lyme borreliosis, must evade complement activation to allow the infectious agent to survive in its host. One major mechanism that Borrelia uses is to recruit FH from host. Several outer surface proteins (Osp) have been described to bind FH via the C-terminus, and OspE is one of them. Here we report the structure of the tripartite complex formed by OspE, FH19-20 and C3dg at 3.18 Å, showing that OspE and C3dg can bind simultaneously to FH19-20. This verifies that FH19-20 interacts via the “common microbial binding site” on domain 20 with OspE and simultaneously and independently via domain 19 with C3dg. The spatial organization of the tripartite complex explains how OspE on the bacterial surface binds FH19-20, leaving FH fully available to protect the bacteria against complement. Additionally, formation of tripartite complex between FH, microbial protein and C3dg might enable enhanced protection, particularly on those regions on the bacteria where previous complement activation led to deposition of C3d. This might be especially important for slow-growing bacteria that cause chronic disease like Borrelia burgdorferi.Peer reviewe
    corecore