947 research outputs found

    Why do we observe significant differences between measured and ‘back-calculated’ properties of natural fibres?

    Get PDF
    The drive towards sustainability, even in materials technologies, has fuelled an increasing interest in bio-based composites. Cellulosic fibres, such as flax and jute, are being considered as alternatives to technical synthetic fibres, such as glass, as reinforcements in fibre reinforced polymer composites for a wide range of applications. A critical bottleneck in the advancement of plant fibre composites (PFRPs) is our current inability to predict PFRP properties from data on fibre properties. This is highly desirable in the cost- and time-effective development and design of optimised PFRP materials with reliable behaviour. This study, alongside limited other studies in literature, have found that the experimentally determined (through single fibre tests) fibre properties are significantly different from the predicted (‘back-calculated’ using the popular rule-of-mixtures) fibre properties for plant fibres. In this note, we explore potential sources of the observed discrepancy and identify the more likely origins relating to both measurement and errors in predictions based on the rule-of-mixtures. The explored content in this discussion facilitates the design of a future investigation to (1) identify the sensitivity of the discrepancy between measured and predicted fibre properties to the various potential origins, (2) form a unified hypothesis on the observed phenomenon, and (3) determine whether the rule-of-mixtures model (in specific cases) can be improved and may be able to predict properties precisely.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10570-016-0926-

    Lepton Jets in (Supersymmetric) Electroweak Processes

    Get PDF
    We consider some of the recent proposals in which weak-scale dark matter is accompanied by a GeV scale dark sector that could produce spectacular lepton-rich events at the LHC. Since much of the collider phenomenology is only weakly model dependent it is possible to arrive at generic predictions for the discovery potential of future experimental searches. We concentrate on the production of dark states through Z0Z^0 bosons and electroweak-inos at the Tevatron or LHC, which are the cleanest channels for probing the dark sector. We properly take into account the effects of dark radiation and dark cascades on the formation of lepton jets. Finally, we present a concrete definition of a lepton jet and suggest several approaches for inclusive experimental searches.Comment: 23 pages, 13 figures, published version, added section 3.3 expanding on lepton jet's morpholog

    Dacryocystitis presenting as post-septal cellulitis: a case report

    Get PDF
    Dacryocystitis is relatively common, the majority of patients present with pre-septal cellulitis and not an orbital abscess due to anatomical barriers. The authors report a case of dacryocystitis presenting as post-septal cellulitis in a postmenopausal lady with an underlying malignancy. Following antibiotic therapy and elective dacryocystorhinostomy the patient is still under follow-up, and has no further recurrence of symptoms. Orbital abscess in postmenopausal women presenting with dacryocystitis should be considered, as prompt recognition and early surgical intervention is required to prevent visual loss

    Optimal measurement of visual motion across spatial and temporal scales

    Full text link
    Sensory systems use limited resources to mediate the perception of a great variety of objects and events. Here a normative framework is presented for exploring how the problem of efficient allocation of resources can be solved in visual perception. Starting with a basic property of every measurement, captured by Gabor's uncertainty relation about the location and frequency content of signals, prescriptions are developed for optimal allocation of sensors for reliable perception of visual motion. This study reveals that a large-scale characteristic of human vision (the spatiotemporal contrast sensitivity function) is similar to the optimal prescription, and it suggests that some previously puzzling phenomena of visual sensitivity, adaptation, and perceptual organization have simple principled explanations.Comment: 28 pages, 10 figures, 2 appendices; in press in Favorskaya MN and Jain LC (Eds), Computer Vision in Advanced Control Systems using Conventional and Intelligent Paradigms, Intelligent Systems Reference Library, Springer-Verlag, Berli

    No imminent quantum supremacy by boson sampling

    Get PDF
    It is predicted that quantum computers will dramatically outperform their conventional counterparts. However, large-scale universal quantum computers are yet to be built. Boson sampling is a rudimentary quantum algorithm tailored to the platform of photons in linear optics, which has sparked interest as a rapid way to demonstrate this quantum supremacy. Photon statistics are governed by intractable matrix functions known as permanents, which suggests that sampling from the distribution obtained by injecting photons into a linear-optical network could be solved more quickly by a photonic experiment than by a classical computer. The contrast between the apparently awesome challenge faced by any classical sampling algorithm and the apparently near-term experimental resources required for a large boson sampling experiment has raised expectations that quantum supremacy by boson sampling is on the horizon. Here we present classical boson sampling algorithms and theoretical analyses of prospects for scaling boson sampling experiments, showing that near-term quantum supremacy via boson sampling is unlikely. While the largest boson sampling experiments reported so far are with 5 photons, our classical algorithm, based on Metropolised independence sampling (MIS), allowed the boson sampling problem to be solved for 30 photons with standard computing hardware. We argue that the impact of experimental photon losses means that demonstrating quantum supremacy by boson sampling would require a step change in technology.Comment: 25 pages, 9 figures. Comments welcom

    Preferential risk of HPV16 for squamous cell carcinoma and of HPV18 for adenocarcinoma of the cervix compared to women with normal cytology in The Netherlands

    Get PDF
    We present the type-distribution of high-risk human papillomavirus (HPV) types in women with normal cytology (n=1467), adenocarcinoma in situ (ACIS) (n=61), adenocarcinoma (n=70), and squamous cell carcinoma (SCC) (n=83). Cervical adenocarcinoma and ACIS were significantly more frequently associated with HPV18 (ORMH 15.0; 95% CI 8.6–26.1 and 21.8; 95% CI 11.9–39.8, respectively) than normal cytology. Human papillomavirus16 was only associated with adenocarcinoma and ACIS after exclusion of HPV18-positive cases (ORMH 6.6; 95% CI 2.8–16.0 and 9.4; 95% CI 2.8–31.2, respectively). For SCC, HPV16 prevalence was elevated (ORMH 7.0; 95% CI 3.9–12.4) compared to cases with normal cytology, and HPV18 prevalence was only increased after exclusion of HPV16-positive cases (ORMH 4.3; 95% CI 1.6–11.6). These results suggest that HPV18 is mainly a risk factor for the development of adenocarcinoma whereas HPV16 is associated with both SCC and adenocarcinoma

    The contribution of HPV18 to cervical cancer is underestimated using high-grade CIN as a measure of screening efficiency

    Get PDF
    In one geographical area, 14 high-risk human papillomavirus types in cervical intraepithelial neoplasia (CIN2/3; n=139) and cervical squamous cell carcinoma (SCC; n=84) were analysed. HPV18 was more prevalent in SCC than CIN2/3 (OR 9.8; 95% confidence interval: 2.5–39). Other high-risk types prevalences corresponded in CIN2/3 and SCC. Evaluations using CIN2/3 as a measure of efficiency underestimate the contribution of HPV18 to SCC

    Current State of the Science: Health Effects and Indoor Environmental Quality

    Get PDF
    Our understanding of the relationship between human health and the indoor environment continues to evolve. Previous research on health and indoor environments has tended to concentrate on discrete pollutant sources and exposures and on specific disease processes. Recently, efforts have been made to characterize more fully the complex interactions between the health of occupants and the interior spaces they inhabit. In this article we review recent advances in source characterization, exposure assessment, health effects associated with indoor exposures, and intervention research related to indoor environments. Advances in source characterization include a better understanding of how chemicals are transported and processed within spaces and the role that other factors such as lighting and building design may play in determining health. Efforts are under way to improve our ability to measure exposures, but this remains a challenge, particularly for biological agents. Researchers are also examining the effects of multiple exposures as well as the effects of exposures on vulnerable populations such as children and the elderly. In addition, a number of investigators are also studying the effects of modifying building design, materials, and operations on occupant health. Identification of research priorities should include input from building designers, operators, and the public health community
    corecore