1,124 research outputs found

    Minimizing complications during retropubic radical prostatectomy - is ureteral stenting necessary?

    Get PDF
    <p>Abstract</p> <p>Objectives and aims</p> <p>To avoid damage to the ureters during bladder neck preparation in radical prostatectomy for prostate cancer, it may be helpful to insert ureteral stents temporarily or to intravenously administer indigo carmine dye for enhanced visualisation of ureteric orifices. We evaluated our bladder neck preserving technique at radical prostatectomy with regard to ureteric injuries.</p> <p>Patients and methods</p> <p>We analysed 369 consecutive radical prostatectomies operated in our clinic in a bladder neck preserving technique. The following parameters were assessed in this retrospective study: number of prophylactic ureteric stent insertions, application of indigo carmine dye, observed injuries of the ureters by the surgeon, postoperative increase of serum creatinine and postoperative status of kidney ultrasound.</p> <p>Results</p> <p>In 7/369 prostatectomies (1.90%) a ureteric stent insertion was performed, indigo carmine was not applied to any patient at all, yet no intraoperative injury of a ureter was observed by a surgeon. No revision was necessary due to a ureteral injury within the observation period of one year after surgery. In 17 patients with preoperative normal creatinine value a pathological value was observed on the first postoperative day (mean 1.4 mg/dl). In these patients no consecutive postrenal acute renal failure was observed, no hydronephrosis was monitored by ultrasound and no further intervention was necessary.</p> <p>Conclusions</p> <p>Bladder neck preserving operation technique does not implicate the need of prophylactic ureteric stent insertions and has no higher incidence of ureteric injuries.</p

    The role of receptor MAS in microglia-driven retinal vascular development

    Get PDF
    Objective: The receptor MAS, encoded by Mas1, is expressed in microglia and its activation has been linked to anti-inflammatory actions. However, microglia are involved in several different processes in the central nervous system, including the promotion of angiogenesis. We therefore hypothesized that the receptor MAS also plays a role in angiogenesis via microglia. Approach and results: To assess the role of MAS on vascular network development, flat-mounted retinas from 3-day-old wild-type (WT) and Mas1−/− mice were subjected to Isolectin B4 staining. The progression of the vascular front was reduced (− 24%, p < 0.0001) and vascular density decreased (− 38%, p < 0.001) in Mas1−/− compared to WT mice with no change in the junction density. The number of filopodia and filopodia bursts were decreased in Mas1−/− mice at the vascular front (− 21%, p < 0.05; − 29%, p < 0.0001, respectively). This was associated with a decreased number of vascular loops and decreased microglial density at the vascular front in Mas1−/− mice (-32%, p < 0.001; − 26%, p < 0.05, respectively). As the front of the developing vasculature is characterized by reduced oxygen levels, we determined the expression of Mas1 following hypoxia in primary microglia from 3-day-old WT mice. Hypoxia induced a 14-fold increase of Mas1 mRNA expression (p < 0.01). Moreover, stimulation of primary microglia with a MAS agonist induced expression of Notch1 (+ 57%, p < 0.05), Dll4 (+ 220%, p  < 0.001) and Jag1 (+ 137%, p < 0.001), genes previously described to mediate microglia/endothelial cell interaction during angiogenesis. Conclusions: Our study demonstrates that the activation of MAS is important for microglia recruitment and vascular growth in the developing retina

    Ionic high-pressure form of elemental boron

    Full text link
    Boron is an element of fascinating chemical complexity. Controversies have shrouded this element since its discovery was announced in 1808: the new 'element' turned out to be a compound containing less than 60-70 percent of boron, and it was not until 1909 that 99-percent pure boron was obtained. And although we now know of at least 16 polymorphs, the stable phase of boron is not yet experimentally established even at ambient conditions. Boron's complexities arise from frustration: situated between metals and insulators in the periodic table, boron has only three valence electrons, which would favour metallicity, but they are sufficiently localized that insulating states emerge. However, this subtle balance between metallic and insulating states is easily shifted by pressure, temperature and impurities. Here we report the results of high-pressure experiments and ab initio evolutionary crystal structure predictions that explore the structural stability of boron under pressure and, strikingly, reveal a partially ionic high-pressure boron phase. This new phase is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell) consisting of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement. We find that the ionicity of the phase affects its electronic bandgap, infrared adsorption and dielectric constants, and that it arises from the different electronic properties of the B2 pairs and B12 clusters and the resultant charge transfer between them.Comment: Published in Nature 453, 863-867 (2009

    Electronic stress tensor analysis of hydrogenated palladium clusters

    Get PDF
    We study the chemical bonds of small palladium clusters Pd_n (n=2-9) saturated by hydrogen atoms using electronic stress tensor. Our calculation includes bond orders which are recently proposed based on the stress tensor. It is shown that our bond orders can classify the different types of chemical bonds in those clusters. In particular, we discuss Pd-H bonds associated with the H atoms with high coordination numbers and the difference of H-H bonds in the different Pd clusters from viewpoint of the electronic stress tensor. The notion of "pseudo-spindle structure" is proposed as the region between two atoms where the largest eigenvalue of the electronic stress tensor is negative and corresponding eigenvectors forming a pattern which connects them.Comment: 22 pages, 13 figures, published online, Theoretical Chemistry Account

    Bridging topological and functional information in protein interaction networks by short loops profiling

    Get PDF
    Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship

    Markov clustering versus affinity propagation for the partitioning of protein interaction graphs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome scale data on protein interactions are generally represented as large networks, or graphs, where hundreds or thousands of proteins are linked to one another. Since proteins tend to function in groups, or complexes, an important goal has been to reliably identify protein complexes from these graphs. This task is commonly executed using clustering procedures, which aim at detecting densely connected regions within the interaction graphs. There exists a wealth of clustering algorithms, some of which have been applied to this problem. One of the most successful clustering procedures in this context has been the Markov Cluster algorithm (MCL), which was recently shown to outperform a number of other procedures, some of which were specifically designed for partitioning protein interactions graphs. A novel promising clustering procedure termed Affinity Propagation (AP) was recently shown to be particularly effective, and much faster than other methods for a variety of problems, but has not yet been applied to partition protein interaction graphs.</p> <p>Results</p> <p>In this work we compare the performance of the Affinity Propagation (AP) and Markov Clustering (MCL) procedures. To this end we derive an unweighted network of protein-protein interactions from a set of 408 protein complexes from <it>S. cervisiae </it>hand curated in-house, and evaluate the performance of the two clustering algorithms in recalling the annotated complexes. In doing so the parameter space of each algorithm is sampled in order to select optimal values for these parameters, and the robustness of the algorithms is assessed by quantifying the level of complex recall as interactions are randomly added or removed to the network to simulate noise. To evaluate the performance on a weighted protein interaction graph, we also apply the two algorithms to the consolidated protein interaction network of <it>S. cerevisiae</it>, derived from genome scale purification experiments and to versions of this network in which varying proportions of the links have been randomly shuffled.</p> <p>Conclusion</p> <p>Our analysis shows that the MCL procedure is significantly more tolerant to noise and behaves more robustly than the AP algorithm. The advantage of MCL over AP is dramatic for unweighted protein interaction graphs, as AP displays severe convergence problems on the majority of the unweighted graph versions that we tested, whereas MCL continues to identify meaningful clusters, albeit fewer of them, as the level of noise in the graph increases. MCL thus remains the method of choice for identifying protein complexes from binary interaction networks.</p

    ACE as a Mechanosensor to Shear Stress Influences the Control of Its Own Regulation via Phosphorylation of Cytoplasmic Ser1270

    Get PDF
    Objectives: We tested whether angiotensin converting enzyme (ACE) and phosphorylation of Ser(1270) are involved in shear-stress (SS)-induced downregulation of the enzyme. Methods and Results: Western blotting analysis showed that SS (18 h, 15 dyn/cm(2)) decreases ACE expression and phosphorylation as well as p-JNK inhibition in human primary endothelial cells (EC). CHO cells expressing wild-type ACE (wt-ACE) also displayed SS-induced decrease in ACE and p-JNK. Moreover, SS decreased ACE promoter activity in wt-ACE, but had no effect in wild type CHO or CHO expressing ACE without either the extra-or the intracellular domains, and decreased less in CHO expressing a mutated ACE at Ser(1270) compared to wt-ACE (13 vs. 40%, respectively). The JNK inhibitor (SP600125, 18 h), in absence of SS, also decreased ACE promoter activity in wt-ACE. Finally, SS-induced inhibition of ACE expression and phosphorylation in EC was counteracted by simultaneous exposure to an ACE inhibitor. Conclusions: ACE displays a key role on its own downregulation in response to SS. This response requires both the extra- and the intracellular domains and ACE Ser(1270), consistent with the idea that the extracellular domain behaves as a mechanosensor while the cytoplasmic domain elicits the downstream intracellular signaling by phosphorylation on Ser(1270).Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[01/00009-0]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[03/14115-2]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[06/52053-7]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)[480120/2007-2

    Diagnostic thinking and information used in clinical decision-making: a qualitative study of expert and student dental clinicians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is uncertain whether the range and frequency of Diagnostic Thinking Processes (DTP) and pieces of information (concepts) involved in dental restorative treatment planning are different between students and expert clinicians.</p> <p>Methods</p> <p>We video-recorded dental visits with one standardized patient. Clinicians were subsequently interviewed and their cognitive strategies explored using guide questions; interviews were also recorded. Both visit and interview were content-analyzed, following the Gale and Marsden model for clinical decision-making. Limited tests used to contrast data were t, χ<sup>2</sup>, and Fisher's. Scott's π was used to determine inter-coder reliability.</p> <p>Results</p> <p>Fifteen dentists and 17 senior dental students participated in visits lasting 32.0 minutes (± 12.9) among experts, and 29.9 ± 7.1 among students; contact time with patient was 26.4 ± 13.9 minutes (experts), and 22.2 ± 7.5 (students). The time elapsed between the first and the last instances of the clinician looking in the mouth was similar between experts and students. Ninety eight types of pieces of information were used in combinations with 12 DTPs. The main differences found in DTP utilization had dentists conducting diagnostic interpretations of findings with sufficient certainty to be considered definitive twice as often as students. Students resorted more often to more general or clarifying enquiry in their search for information than dentists.</p> <p>Conclusions</p> <p>Differences in diagnostic strategies and concepts existed within clearly delimited types of cognitive processes; such processes were largely compatible with the analytic and (in particular) non-analytic approaches to clinical decision-making identified in the medical field. Because we were focused on a clinical presentation primarily made up of non-emergency treatment needs, use of other DTPs and concepts might occur when clinicians evaluate emergency treatment needs, complex rehabilitative cases, and/or medically compromised patients.</p

    Childhood exposure to external ionising radiation and solid cancer risk

    Get PDF
    The increasing use of ionising radiation for diagnostic purposes has raised concern about potential iatrogenic damage, especially in children. In this review, we discuss some aspects of radiation-induced cancer in relation to age at exposure and measures that should be taken for limiting exposure in this sensitive population
    corecore