5,894 research outputs found
Accurate masses and radii of normal stars: modern results and applications
This paper presents and discusses a critical compilation of accurate,
fundamental determinations of stellar masses and radii. We have identified 95
detached binary systems containing 190 stars (94 eclipsing systems, and alpha
Centauri) that satisfy our criterion that the mass and radius of both stars be
known to 3% or better. To these we add interstellar reddening, effective
temperature, metal abundance, rotational velocity and apsidal motion
determinations when available, and we compute a number of other physical
parameters, notably luminosity and distance. We discuss the use of this
information for testing models of stellar evolution. The amount and quality of
the data also allow us to analyse the tidal evolution of the systems in
considerable depth, testing prescriptions of rotational synchronisation and
orbital circularisation in greater detail than possible before. The new data
also enable us to derive empirical calibrations of M and R for single (post-)
main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff),
log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively.
Excellent agreement is found with independent determinations for host stars of
transiting extrasolar planets, and good agreement with determinations of M and
R from stellar models as constrained by trigonometric parallaxes and
spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23
interferometric binaries with masses known to better than 3%, but without
fundamental radius determinations (except alpha Aur). We discuss the prospects
for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and
Astrophysics Review. Ascii versions of the tables will appear in the online
version of the articl
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics\ud
Objective: To investigate the impact of upper extremity deficit in subjects with tetraplegia.\ud
\ud
Setting: The United Kingdom and The Netherlands.\ud
\ud
Study design: Survey among the members of the Dutch and UK Spinal Cord Injury (SCI) Associations.\ud
\ud
Main outcome parameter: Indication of expected improvement in quality of life (QOL) on a 5-point scale in relation to improvement in hand function and seven other SCI-related impairments.\ud
\ud
Results: In all, 565 subjects with tetraplegia returned the questionnaire (overall response of 42%). Results in the Dutch and the UK group were comparable. A total of 77% of the tetraplegics expected an important or very important improvement in QOL if their hand function improved. This is comparable to their expectations with regard to improvement in bladder and bowel function. All other items were scored lower.\ud
\ud
Conclusion: This is the first study in which the impact of upper extremity impairment has been assessed in a large sample of tetraplegic subjects and compared to other SCI-related impairments that have a major impact on the life of subjects with SCI. The present study indicates a high impact as well as a high priority for improvement in hand function in tetraplegics.\ud
\u
Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis
The finding of TDP-43 as a major component of ubiquitinated protein inclusions in amyotrophic lateral sclerosis (ALS) has led to the identification of 30 mutations in the transactive response-DNA binding protein (TARDBP) gene, encoding TDP-43. All but one are in exon 6, which encodes the glycine-rich domain. The aim of this study was to determine the frequency of TARDBP mutations in a large cohort of motor neurone disease patients from Northern England (42 non-superoxide dismutase 1 (SOD1) familial ALS (FALS), nine ALS-frontotemporal dementia, 474 sporadic ALS (SALS), 45 progressive muscular atrophy cases). We identified four mutations, two of which were novel, in two familial (FALS) and two sporadic (SALS) cases, giving a frequency of TARDBP mutations in non-SOD1 FALS of 5% and SALS of 0.4%. Analysis of clinical data identified that patients had typical ALS, with limb or bulbar onset, and showed considerable variation in age of onset and rapidity of disease course. However, all cases had an absence of clinically overt cognitive dysfunction
Behavioural and Cognitive Associations of Short Stature at 5 Years
Objectives To determine the extent to which childhood short stature is associated with cognitive, behavioural and chronic health problems, and whether these problems could be attributed to recognized adverse biological, psychosocial or psychological factors. Methodology At their first antenatal session, 8556 women were enrolled in a prospective study of pregnancy. When their children were 4 and 6 years of age, mothers completed a detailed questionnaire concerning their child's health and behaviour. A Peabody Picture Vocabulary Test-Revised (PPVT-R) was completed by the child at 5 years of age. Z scores were used to categorize height measurements in 3986 children. The relationship of these height categories with the child's health, and behavioural and cognitive problems was then examined. Results No association was found between height and symptoms of chronic disease or behaviour problems in boys or girls. On the unadjusted analysis, mean PPVT-R scores were significantly lower in boys with heights < 3 percentile and 3-10 percentile compared with study children between 10 to 90 percentile (P < 0.01). Scores were similarly significantly lower in girls with heights < 3 percentile and 3-10 percentile (P = 0.01). Even after adjusting for psychosocial and biological confounders, short stature remained a significant predictor for lower PPVT-R scores in both boys and girls, although height only accounted for 1.1% of the variance in scores in boys and 0.5% of the variance in PPVT-R scores in girls. Psychosocial factors had a greater role than height in determining PPVT-R scores at 5 years of age. Conclusions These findings suggest a significant, though small, association between height and PPVT-R scores at 5 years of age, independent of psychosocial disadvantage and known biological risk factors
A reference relative time-scale as an alternative to chronological age for cohorts with long follow-up
Background: Epidemiologists have debated the appropriate time-scale for cohort survival studies; chronological age or time-on-study being two such time-scales. Importantly, assessment of risk factors may depend on the choice of time-scale. Recently, chronological or attained age has gained support but a case can be made for a ‘reference relative time-scale’ as an alternative which circumvents difficulties that arise with this and other scales. The reference relative time of an individual participant is the integral of a reference population hazard function between time of entry and time of exit of the individual. The objective here is to describe the reference relative time-scale, illustrate its use, make comparison with attained age by simulation and explain its relationship to modern and traditional epidemiologic methods.
Results: A comparison was made between two models; a stratified Cox model with age as the time-scale versus an un-stratified Cox model using the reference relative time-scale. The illustrative comparison used a UK cohort of cotton workers, with differing ages at entry to the study, with accrual over a time period and with long follow-up. Additionally, exponential and Weibull models were fitted since the reference relative time-scale analysis need not be restricted to the Cox model. A simulation study showed that analysis using the reference relative time-scale and analysis using chronological age had very similar power to detect a significant risk factor and both were equally unbiased. Further, the analysis using the reference relative time-scale supported fully-parametric survival modelling and allowed percentile predictions and mortality curves to be constructed.
Conclusions: The reference relative time-scale was a viable alternative to chronological age, led to simplification of the modelling process and possessed the defined features of a good time-scale as defined in reliability theory. The reference relative time-scale has several interpretations and provides a unifying concept that links contemporary approaches in survival and reliability analysis to the traditional epidemiologic methods of Poisson regression and standardised mortality ratios. The community of practitioners has not previously made this connection
An Improved and Homogeneous Altimeter Sea Level Record from the ESA Climate Change Initiative
Sea Level is a very sensitive index of climate change since it integrates the impacts of ocean warming and ice mass loss from glaciers and the ice sheets. Sea Level has been listed as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS). During the past 25 years, the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed at providing an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV has been made available to users (Ablain et al., 2015).
During the second phase (2014-2017), improved altimeter standards have been selected to produce new sea level products (called SL_cci v2.0) based on 9 altimeter missions for the period 1993-2015 (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612). Corresponding orbit solutions, geophysical corrections and altimeter standards used in this v2.0 dataset are described in details in Quartly et al. (2017). The present paper focuses on the description of the SL_cci v2.0 ECV and associated uncertainty and discusses how it has been validated. Various approaches have been used for the quality assessment such as internal validation, comparisons with sea level records from other groups and with in-situ measurements, sea level budget closure analyses and comparisons with model outputs. Compared to the previous version of the sea level ECV, we show that use of improved geophysical corrections, careful bias reduction between missions and inclusion of new altimeter missions lead to improved sea level products with reduced uncertainties at different spatial and temporal scales. However, there is still room for improvement since the uncertainties remain larger than the GCOS requirements. Perspectives for subsequent evolutions are also discussed
How weeds emerge: a taxonomic and trait‐based examination using United States data
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106812/1/nph12698.pd
Oxide Heterostructures from a Realistic Many-Body Perspective
Oxide heterostructures are a new class of materials by design, that open the
possibility for engineering challenging electronic properties, in particular
correlation effects beyond an effective single-particle description. This short
review tries to highlight some of the demanding aspects and questions,
motivated by the goal to describe the encountered physics from first
principles. The state-of-the-art methodology to approach realistic many-body
effects in strongly correlated oxides, the combination of density functional
theory with dynamical mean-field theory, will be briefly introduced. Discussed
examples deal with prominent Mott-band- and band-band-insulating type of oxide
heterostructures, where different electronic characteristics may be stabilized
within a single architectured oxide material.Comment: 19 pages, 9 figure
What do -ray bursts look like?
There have been great and rapid progresses in the field of -ray
bursts (denoted as GRBs) since BeppoSAX and other telescopes discovered their
afterglows in 1997. Here, we will first give a brief review on the
observational facts of GRBs and direct understanding from these facts, which
lead to the standard fireball model. The dynamical evolution of the fireball is
discussed, especially a generic model is proposed to describe the whole
dynamical evolution of GRB remnant from highly radiative to adiabatic, and from
ultra-relativistic to non-relativistic phase. Then, Various deviations from the
standard model are discussed to give new information about GRBs and their
environment. In order to relax the energy crisis, the beaming effects and their
possible observational evidences are also discussed in GRB's radiations.Comment: 10 pages, Latex. Invited talk at the Pacific Rim Conference on
Stellar Astrophysics, Hong Kong, China, Aug. 199
- …
