74 research outputs found

    Memory-related gene expression profile of the male rat hippocampus induced by teeth extraction and occlusal support recovery

    Get PDF
    Objectives: The present study aimed to identify the effect of memory-related genes on male rats tested for spatial memory with either molar teeth extraction or its restoration by occlusal support using experimental dentures. Design: Memory-related genes were detected from hippocampi of male Wistar rats (exposed to teeth extraction with or without dentures, or no extraction (control)) (7-week old) after behavioural testing (via the radial maze task) using a DNA microarray. The time course of the expression of these genes was evaluated by quantitative real-time polymerase chain reaction (PCR) (on 49-week-old rats). Results: In preliminary experiments, to determine which memory genes are affected by spatial memory training, DNA microarray analysis revealed that thyrotropin-releasing hormone (Trh) and tenascin XA (Tnxa) were up-regulated and neuronatin (Nnat) and S100a9 were down-regulated after the maze training. The expression of Tnxa, Nnat and S100a9 of 49-week-old rats (during the time course) via quantitative real-time PCR was consistent with the results of microarrays of the preliminary experiment. Expression of Trh that was evaluated by quantitative real-time PCR did not agree with the results for this gene from the microarray for all groups. Therefore, expression of Trh may have increased in only young, trained rats. The expression of S100a9 prior to the maze task was down-regulated in only the extraction group. Conclusion: These results demonstrated that Trh, Tnxa and Nnat genes were affected according to the degree of memory in male rats. This study also indicated that S100a9 is a memory-related gene, which is affected by the presence of occlusal support

    A Huge Filamentary Structure at z=0.55 and Star Formation Histories of Galaxies at z<1

    Full text link
    We report a definitive confirmation of a large-scale structure around the super rich cluster CL0016+1609 at z=0.55. We made spectroscopic follow-up observations with FOCAS on Subaru along the large filamentary structure identified in our previous photometric studies. We have confirmed the physical connection of the huge filament extending over 20 Mpc in the N-S direction, and another filament extending from the main cluster to the East. Based on a simple energy argument, we show that it is likely that most of the clumps are bound to the main CL0016 cluster. This structure is surely one of the most prominent confirmed structures ever identified in the distant Universe, which then serves as an ideal laboratory to examine the environmental variation of galaxy properties. We draw star formation histories of galaxies from the composite spectra of red galaxies in field, group, and cluster environments. Combining the results from our previous studies, we find that red galaxies in groups at z~0.8 and red field galaxies at z~0.5 show strong Hd absorption lines for their D4000 indices. These are the environments in which we observed the on-going build-up of the colour-magnitude relation in our previous photometric analyses. The strong Hd absorption lines imply that their star formation is truncated on a relatively short time scale. We suggest that a galaxy-galaxy interaction is the most likely physical driver of the truncation of star formation and thus responsible for the build-up of the colour-magnitude relation since z~1. (Abridged)Comment: 13 pages, 5 figures, accepted for publication in MNRA

    Usefulness of fecal calprotectin by monoclonal antibody testing in adult Japanese with inflammatory bowel diseases: a prospective multicenter study

    Get PDF
    Background/Aims Noninvasive objective monitoring is advantageous for optimizing treatment strategies in patients inflammatory bowel disease (IBD). Fecal calprotectin (FCP) is superior to traditional biomarkers in terms of assessing the activity in patients with IBD. However, there are the differences among several FCP assays in the dynamics of FCP. In this prospective multicenter trial, we investigated the usefulness of FCP measurements in adult Japanese patients with IBD by reliable enzyme immunoassay using a monoclonal antibody. Methods We assessed the relationship between FCP levels and disease or endoscopic activity in patients with ulcerative colitis (UC, n=64) or Crohn’s disease (CD, n=46) compared with healthy controls (HCs, n=64). Results FCP levels in UC patients strongly correlated with the Disease Activity Index (rs=0.676, P<0.0001) and Mayo endoscopic subscore (MES; rs=0.677, P<0.0001). FCP levels were significantly higher even in patients with inactive UC or CD compared with HCs (P=0.0068, P<0.0001). The optimal cutoff value between MES 1 and 2 exhibited higher sensitivity (94.1%). FCP levels were significantly higher in active UC patients than in inactive patients (P<0.001), except those with proctitis. The Crohn’s Disease Activity Index tended to correlate with the FCP level (rs=0.283, P=0.0565). Conclusions Our testing method using a monoclonal antibody for FCP was well-validated and differentiated IBD patients from HCs. FCP may be a useful biomarker for objective assessment of disease activity in adult Japanese IBD patients, especially those with UC

    Perspective Chapter: Mountain Health Care Room

    Get PDF
    The Kinjo University Faculty of Nursing has been running a project since 2017 as part of its community collaboration activities to help Hakusanroku residents maintain good health. First, we opened the Mountain Health Care Room for community salon participants and conducted a basic survey of Hakusanroku healthcare supporters and community residents. We then provided health education and recreational activities to help older adults maintain good health. Since 2020, we have been unable to hold community activities due to the COVID-19 pandemic, and have been attempting to determine the day-to-day circumstances of residents. In addition to in-person community activities, there is a need for new initiatives such as online activities to help people connect and help older adults living in Hakusanroku to maintain good health

    Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system

    Get PDF
    半数体生物の性染色体上の性決定遺伝子を解明 --コケがもつ現生生物最古の起源の性染色体--. 京都大学プレスリリース. 2021-11-08.Sex determination is a central process for sexual reproduction and is often regulated by a sex determinant encoded on a sex chromosome. Rules that govern the evolution of sex chromosomes via specialization and degeneration following the evolution of a sex determinant have been well studied in diploid organisms. However, distinct predictions apply to sex chromosomes in organisms where sex is determined in the haploid phase of the life cycle: both sex chromosomes, female U and male V, are expected to maintain their gene functions, even though both are non-recombining. This is in contrast to the X-Y (or Z-W) asymmetry and Y (W) chromosome degeneration in XY (ZW) systems of diploids. Here, we provide evidence that sex chromosomes diverged early during the evolution of haploid liverworts and identify the sex determinant on the Marchantia polymorpha U chromosome. This gene, Feminizer, encodes a member of the plant-specific BASIC PENTACYSTEINE transcription factor family. It triggers female differentiation via regulation of the autosomal sex-determining locus of FEMALE GAMETOPHYTE MYB and SUPPRESSOR OF FEMINIZATION. Phylogenetic analyses of Feminizer and other sex chromosome genes indicate dimorphic sex chromosomes had already been established 430 mya in the ancestral liverwort. Feminizer also plays a role in reproductive induction that is shared with its gametolog on the V chromosome, suggesting an ancestral function, distinct from sex determination, was retained by the gametologs. This implies ancestral functions can be preserved after the acquisition of a sex determination mechanism during the evolution of a dominant haploid sex chromosome system

    Dynamic Regulation of Myosin Light Chain Phosphorylation by Rho-kinase

    Get PDF
    Myosin light chain (MLC) phosphorylation plays important roles in various cellular functions such as cellular morphogenesis, motility, and smooth muscle contraction. MLC phosphorylation is determined by the balance between activities of Rho-associated kinase (Rho-kinase) and myosin phosphatase. An impaired balance between Rho-kinase and myosin phosphatase activities induces the abnormal sustained phosphorylation of MLC, which contributes to the pathogenesis of certain vascular diseases, such as vasospasm and hypertension. However, the dynamic principle of the system underlying the regulation of MLC phosphorylation remains to be clarified. Here, to elucidate this dynamic principle whereby Rho-kinase regulates MLC phosphorylation, we developed a mathematical model based on the behavior of thrombin-dependent MLC phosphorylation, which is regulated by the Rho-kinase signaling network. Through analyzing our mathematical model, we predict that MLC phosphorylation and myosin phosphatase activity exhibit bistability, and that a novel signaling pathway leading to the auto-activation of myosin phosphatase is required for the regulatory system of MLC phosphorylation. In addition, on the basis of experimental data, we propose that the auto-activation pathway of myosin phosphatase occurs in vivo. These results indicate that bistability of myosin phosphatase activity is responsible for the bistability of MLC phosphorylation, and the sustained phosphorylation of MLC is attributed to this feature of bistability
    corecore