2,887 research outputs found

    Effects of Apamin and Charybdtoxin on Endothelium Independent Vasodilatation : Implications in the study of EDHF

    Get PDF
    Endothelial derived hyperpolarizing factor (EDHF), together with endothelial derived NO and prostacyclin represent the major endogenous vasodilator hormone pathways (Coleman et al, 2004). Since the chemical nature of EDHF is uncertain, many studies have relied on pharmacological tools. Often EDHF described as the endothelial dependent dilation which is resistant to a combination of drugs that inhibit NO synthase (usually L-NAME) and cyclo-oxygenase (usually indomethacin) but abolished by those that block large and small Ca2+-activated K+ channels (BKCa and SKCa; with charybdotoxin plus apamin respectively). This approach relies on each of these drugs being selective for endothelial dependent responses. In the current study we have taken a different approach to most and performed experiments where inhibitors were added to endothelium denuded vessels after dilators induced stable vasodilatation. Male Wistar rats (200 ± 15.4g) were killed by lethal exposure to CO2. Second order mesenteric arteries were mounted in isometric wire myographs and vasomotor responses recorded as described previously (Harrington and Mitchell, 2004). In some experiments vessels were contracted with EC80 concentration of U46619, dilation was then induced by the addition of 3x10-6M acetylcholine or 3x10-6M SNP. When either L-NAME (10-4M) or charybdotoxin (10-7M) plus apamin (5x10-7M) were added after acetylcholine the vasodilatation was immediately and completely reversed (Figure A and B respectively). In other experiments, endothelium independent vasodilation induced by SNP, were also reversed by charybdotoxin plus apamin, but not L-NAME. Figure A. Example trace of an artery re-contracting following the addition of L-NAME in pre-contracted arteries dilated with acetylcholine. Bar Graphs show re-contraction of arteries in response to L-NAME or charybdotoxin plus apamin (C+A) in arteries with endothelium, dilated with acetylcholine (Figure B) or without endothelium dilated with SNP (Figure C). This data demonstrates that charybdotoxin and apamin have pharmacological effects independent of the endothelium, at the level of smooth muscle cell function. These observations suggest results obtained with these drugs in relation to EDHF studies, should be treated with caution. Harrington L and Mitchell JA (2004) Br J Pharmacol 143: 611-617 Coleman et al (2004) Clin Ex Pharm Phys 31; 641-649Peer reviewedFinal Accepted Versio

    Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging: Part I - Processing parameters, mechanical properties and microstructure

    Get PDF
    A study simulating thin slab continuous casting followed by direct charging into an equalisation furnace has been undertaken based on six low carbon (0.06wt-%) vanadium microalloyed steels. Mechanical and impact test data showed properties were similar or better than those obtained from similar microalloyed conventional thick cast as rolled slabs. The dispersion plus dislocation strengthening was estimated to be in the range 80-250MPa.A detailed TEM/EELS analysis of the dispersion sized sub-15nm particles showed that in all the steels, they were essentially nitrides with little crystalline carbon detected. In the Steels V-Nb, V-Ti and V-Nb-Ti, mixed transition metal nitrides were present. Modelling of equilibrium precipitates in these steels, based on a modified version of ChemSage, predicted that only vanadium rich nitrides would precipitate in austenite but that the C/N ratio would increase through the two phase field and in ferrite. The experimental analytical data clearly points to the thin slab direct charging process, which has substantially higher cooling rates than conventional casting, nucleating non-equilibrium particles in ferrite which are close to stoichiometric nitrides. These did not coarsen during the final stages of processing, but retained their highly stable average size of ~7nm resulting in substantial dispersion strengthening. The results are considered in conjunction with pertinent published literature

    Role of the endothelium and COX-1 in prostacyclin generation by whole vessels stimulated with different agonists

    Get PDF
    Prostacyclin is an important cardioprotective hormone produced by the vascular wall, whose synthesis is dependent on cyclo-oxygenase (COX) enzymes. In healthy vessels the endothelium is thought to be the main site of prostacyclin release (Moncada et al 1977). Two isoforms of COX exist, and we have recently published data demonstrating that it is COX-1 rather than COX-2 that drives the production of prostacyclin in mouse aorta (Kirkby et al 2012). In this study we aimed to extend these observations by investigating what proportion of the COX-1 driven aortic prostacyclin production that comes from the endothelium versus the rest of the vessel wall (smooth muscle layers and adventitia). To do this, we explored how removal of the endothelium would influence the ability of aortic tissue to release prostacyclin in response to a range of agonists that are known to activate the endothelium and the vessel wallNon peer reviewe

    Inference of selection gradients using performance measures as fitness proxies

    Get PDF
    O.D.F. is supported by the Natural Sciences and Engineering Research Council of Canada and the Madame Vigdís Finnbogadóttir Scholarship. M.B.M. is supported by a University Research Fellowship from the Royal Society (London).1.  Selection coefficients, i.e., selection differentials and gradients, are useful for quantifying selection and for making comparisons across traits and organisms, because they appear in known equations for relating selection and genetic variation to one another and to evolutionary change. However, selection coefficients can only be estimated in organisms where traits and fitness (components) can be measured. This is probably a major contributor to taxonomic biases of selection studies. Aspects of organismal performance, i.e., quantities that are likely to be positively related to fitness components, such as body size, are sometimes used as proxies for fitness, i.e., used in place of fitness components in regression-based selection analysis. To date, little theory exists to inform empirical studies about whether such procedures may yield selection coefficients with known relationships to genetic variation and evolution. 2.  We show that the conditions under which performance measures can be used as proxies for fitness are very limited. Such analyses require that the regression of fitness on the proxy is linear and goes through the origin. We illustrate how fitness proxies may be used in conjunction with information about the performance-fitness relationship, and clarify how this is different from substituting fitness proxies for fitness components in selection analyses. 3.  We apply proxy-based and fitness component-based selection analysis to a system where traits, a performance measure (size; similar to proxies that are commonly used in place of fitness), and a more proximate fitness measure, are all available on the same set of individuals. We find that proxy-based selection gradients are poorly reflective of selection gradients estimated using fitness components, even when proxy-fitness relationships are quite strong and reasonably linear. 4.  We discuss the implications for proxy-based selection analysis. We emphasise that measures of organismal performance, such as size, may in many cases provide useful information that can contribute to quantitative inferences about natural selection, and their use could allow quantitative inference about selection to be conducted in a wider range of taxa. However, such inferences require quantitative analysis of both trait-performance and performance-fitness relationships, rather than substitution of performance for measures of fitness or fitness components.PostprintPeer reviewe

    Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms

    Get PDF
    MEDLINE® is the source for the MeSH terms of this document.Objective-: The goal of this study was to examine the effect of chronic heterogeneous shear stress, applied using an orbital shaker, on endothelial cell morphology and the expression of cyclooxygenases 1 and 2. Methods and results-: Porcine aortic endothelial cells were plated on fibronectin-coated Transwell plates. Cells were cultured for up to 7 days either under static conditions or on an orbital shaker that generated a wave of medium inducing shear stress over the cells. Cells were fixed and stained for the endothelial surface marker CD31 or cyclooxygenases 1 and 2. En face confocal microscopy and scanning ion conductance microscopy were used to show that endothelial cells were randomly oriented at the center of the well, aligned with shear stress nearer the periphery, and expressed cyclooxygenase-1 under all conditions. Lipopolysaccharide induced cyclooxygenase-2 and the production of 6-keto-prostaglandin F1α in all cells. Conclusion-: Cyclooxygenase-1 is expressed in endothelial cells cultured under chronic shear stress of high or low directionality.Peer reviewedSubmitted Versio

    Chaos and isospin symmetry breaking in rotational nuclei

    Full text link
    For nuclei with N = Z, the isospin degree of freedom is important and, for deformed systems, rotational bands of different isospin may be expected at low excitation energies. We have investigated, in a simple model space, the influence of the isospin-breaking Coulomb interaction on the degree of chaoticity of these rotational bands. The statistical measures used rely on an analysis of level-spacing distributions, which are extremely difficult to measure experimentally. We show, however, that the overlap intergrals between states of similar frequency reflect well the degree of chaoticity. This quantity is closely related to the experimentally more accessible gamma-decay ``spreading width''.Comment: 13 pages, 9 figures, Elsevie
    corecore