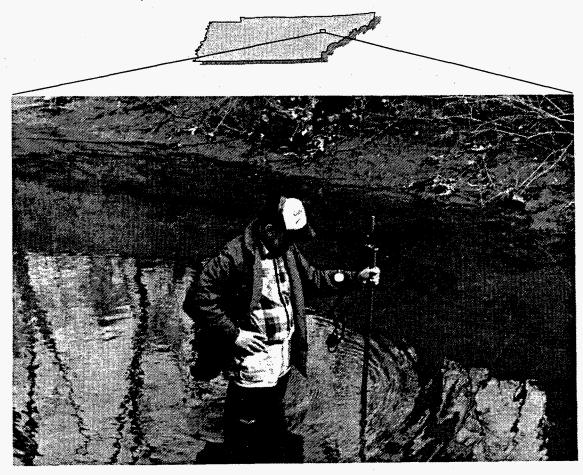
USGS-OFR--96-557


Open-File Report 96-557

Gaining, Losing, and Dry Stream Reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994

U.S. GEOLOGICAL SURVEY

Prepared in cooperation with the U.S. DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

Cover illustration. Photograph by G.E. Hileman.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

GAINING, LOSING, AND DRY STREAM REACHES AT BEAR CREEK VALLEY, OAK RIDGE, TENNESSEE MARCH AND SEPTEMBER 1994

By John A. Robinson and Reavis L. Mitchell, III

U.S. GEOLOGICAL SURVEY

Open-File Report 96-557

Prepared in cooperation with the U.S. DEPARTMENT OF ENERGY

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

STORY STORY

Nashville, Tennessee 1996

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey

For additional information write to:

District Chief U.S. Geological Survey 810 Broadway, Suite 500 Nashville, Tennessee 37203 Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286

CONTENTS

Abstı	ract	1
Intro	duction	1
	Study area	1
	Previous investigation	3
Gain	ing, losing, and dry stream reaches	3
	High base flow	3
	Low base flow	5
Sumr	nary	17
Refer	rences cited	17
PLA	E	
in po	cket]	
	Map showing site locations, discharge measurements, and stream classification during high base flow and low base flow at Bear Creek Valley, Oak Ridge, Tennessee, 1994	
FIGL	JRES	
1-3.	Maps showing	
	1. Location of the study area in Bear Creek Valley, Oak Ridge, Tennessee	2
	2. Stream locations and identification numbers for Bear Creek tributaries	
	3. Location of stream sites in the study area	6
TABI	LES	
1.		
	September 9 through September 29, 1994, at Bear Creek Valley, Oak Ridge, Tennessee	8
2.	Stream reach classification during high base flow at Bear Creek Valley, Oak Ridge,	
	Tennessee, March 14 through March 19, 1994	11
3.	Stream reach classification during low base flow at Bear Creek Valley, Oak Ridge,	
	Tennessee, September 9 through September 29, 1994	14

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To Obtain
foot (ft)	0.3048	meter
acre	0.4047	square hectare
square mile (mi ²)	2.590	square kilometer
mile (mi)	1.609	kilometer
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929—a geodetic datum derived from a general adjustment of first-order level nets of the United States and Canada, formally called Sea Level Datum of 1929.

Gaining, Losing, and Dry Stream Reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994

By John A. Robinson and Reavis L. Mitchell, III

ABSTRACT

A study was conducted to delineate stream reaches that were gaining flow, losing flow, or that were dry in the upper reaches of Bear Creek Valley near the Y-12 Plant in Oak Ridge, Tennessee. The study included a review of maps and discharge data from a seepage investigation conducted at Bear Creek Valley; preparation of tables showing site identification and discharge and stream reaches that were gaining flow, losing flow, or that were dry; and preparation of maps showing measurement site locations and discharge measurements, and gaining, losing, and dry stream reaches. This report will aid in developing a better understanding of ground-water and surface-water interactions in the upper reaches of Bear Creek.

INTRODUCTION

The Oak Ridge Reservation (ORR) is located in East Tennessee in the western part of the Valley and Ridge Physiographic Province. The 58,000-acre ORR is bounded on the northeast, southeast, and southwest by the Clinch River, and on the northwest by Blackoak Ridge (McMaster, 1967). The three major facilities within the ORR are Y-12, a research, development, and production center; X-10, the Oak Ridge National Laboratory (ORNL), a research and development center; and K-25, the Gaseous Diffusion Plant (ORGDP), a production center that was closed in 1986.

During 1994 the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of

Energy, conducted a seepage investigation in Bear Creek Valley (Robinson and Johnson, 1996). In 1995, a second study was started to quantify changes in streamflow to delineate gaining, losing, and dry stream reaches in the headwater streams in Bear Creek Valley. Information provided by this report is intended to aid the Y-12 Environmental Restoration Program, Groundwater Operable Units Remedial Investigations Project, to develop a better understanding of groundwater and surface-water interactions in a part of the ORR.

The study involved (1) a review of maps and discharge data from a seepage investigation conducted in Bear Creek Valley; (2) preparation of tables showing site identification and discharge and stream reaches that were gaining flow, losing flow, or that were dry; and (3) preparation of maps showing measurement site locations and discharge measurements, and gaining, losing, and dry stream reaches. All discharge data used in this report were collected during high base flow conditions, March 14 through March 19, 1994, and low base flow conditions, September 9 through September 19, 1994, at Bear Creek Valley, Oak Ridge, Tennessee.

Study Area

The study area is bounded by Pine Ridge on the northwest, Chestnut Ridge on the southeast, North Tributary 9 (NT9) on the southwest, and the Y-12 Plant on the northeast (fig. 1). Bear Creek Valley southwest of the Y-12 Plant is drained by two streams: Bear Creek, which exits Bear Creek Valley through a water gap in Pine Ridge, and Grassy Creek, which discharges to the Clinch River. The 1,125 acres within the

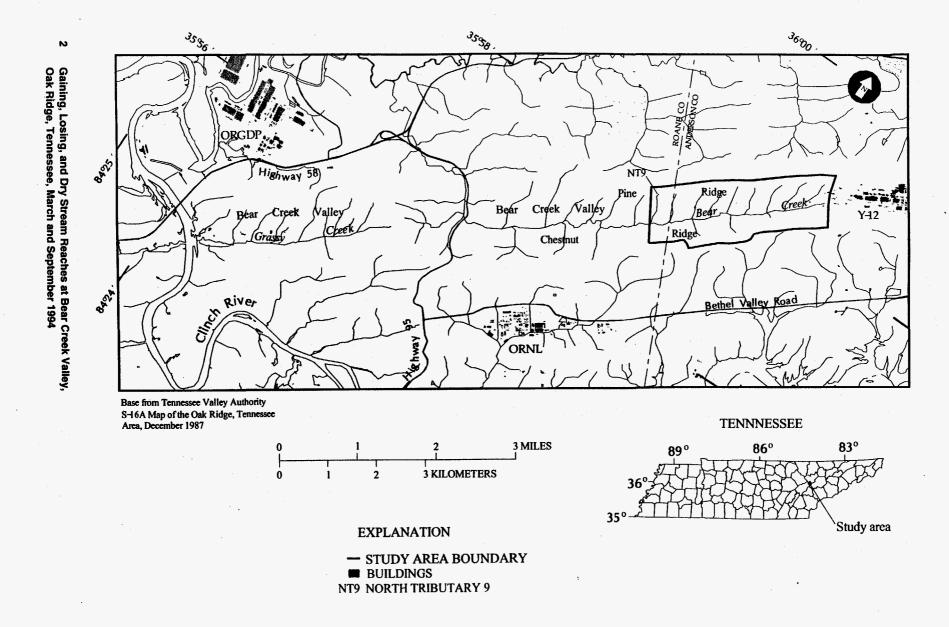


Figure 1. Location of the study area in Bear Creek Valley, Oak Ridge, Tennessee.

study area include the uppermost part of Bear Creek and many tributaries north and south of Bear Creek (fig. 2). The main tributaries to the north of Bear Creek include North Tributary 1 (NT1) through NT8. The main tributaries to the south of Bear Creek include South Tributary 1 (ST1) through ST4 and South Spring 1 (SS1) through SS6. In addition to Bear Creek and the main tributaries, many unnamed subtributaries exist throughout the study area.

Previous Investigation

During 1994 the USGS, in cooperation with the U.S. Department of Energy, conducted a seepage investigation in Bear Creek Valley, in which the Y-12 Plant is located (Robinson and Johnson, 1996). The study involved three phases of activity: (1) a reconnaissance to inventory and map seeps, springs, and stream measurement sites; (2) the measurement of discharge and water-quality characteristics under high base flow conditions; and (3) the measurement of discharge and water-quality characteristics under low base flow conditions. The seepage investigation was conducted on Bear Creek and Grassy Creek. Discharge measurements were made along streams and tributaries in the basins of these two streams, southwest of the Y-12 Plant. In order to gain a better understanding of flow paths in the upper reaches of Bear Creek, discharge measurements from the previous investigation were used in this report to quantify changes in streamflow and to delineate stream reaches which are classified as gaining flow, losing flow, or dry.

GAINING, LOSING, AND DRY STREAM REACHES

For the purposes of this study, stream reaches were classified as gaining flow (gaining), losing flow (losing), or dry. Changes in streamflow between two adjacent sites on the same stream, plus any flow from contributing tributaries, were used to determine if the flow was gaining or losing along that stream reach. To identify reaches that gain or lose flow, as opposed to apparent differences due to measurement error, the following criteria were used: for streamflow of less than 0.1 cubic foot per second (ft³/s), a change in flow of more than 25 percent of total flow was used to determine if the flow was increasing or decreasing; for streamflow equal to or greater than 0.1 ft³/s, a change

in flow of 10 percent was used as the criterion. If two adjacent stream measurement sites had zero flow, these stream reaches were classified as dry. Stream reaches were classified as having no change in flow if the change in streamflow was zero or less than 10 percent for total flow greater than 0.1 ft³/s or less than 25 percent for total flow between 0.01 and 0.1 ft³/s. If two adjacent stream measurement sites had equal flow rates or the difference in flow rates were in the above specified range, these stream reaches had no change in flow. In many instances, discharge was measured at only one site along a stream reach. These single sites along stream reaches may contribute flow to a stream or tributary. Many of the stream reaches in the study area were unobserved as a result of safety concerns or limited access. Discharge was measured at 229 sites in the study area (fig. 3). Site numbers and discharge values are presented in table 1. Changes determined for both high base flow and low base flow conditions, measurement sites, discharge, and stream classification under both conditions are shown on plate 1 at the back of the report.

High Base Flow

Discharge measurements along upper Bear Creek and its tributaries were collected during high base flow from March 14 through March 19, 1994 (Robinson and Johnson, 1996). During high base flow, discharge measurements for Bear Creek ranged from 0.02 to 2.01 ft³/s; however, site 1490, on a small tributary to Bear Creek, had a discharge of 0.01 ft³/s (table 1, plate 1). No dry stream reaches were observed along Bear Creek during high base flow. Gaining stream reaches occurred near NT2, NT3, NT5, NT7, and NT8, with gains in flow from 0.09 to 0.51 ft³/s. Stream reaches losing flow in the range of 0.13 to 1.34 ft³/s occurred near NT1, NT2, NT3, NT4, NT5, NT6, and NT7 (table 2).

The discharge measurements along the north tributaries were 0.16 ft³/s or less with the exception of measurements of 1.10 and 1.16 ft³/s along NT3 near Bear Creek (table 1, plate 1). All tributaries north of Bear Creek had gaining and losing stream reaches. All north tributaries, except NT3, NT7, and NT8, had dry stream reaches. For most of the tributaries north of Bear Creek, gains in flow were in the range of 0.01 to 0.15 ft³/s (table 2), except for a section of NT3, which had the largest measured gain in flow of 1.07 ft³/s. Losses in flow for the north tributaries ranged from 0.01 to 0.22 ft³/s (table 2).

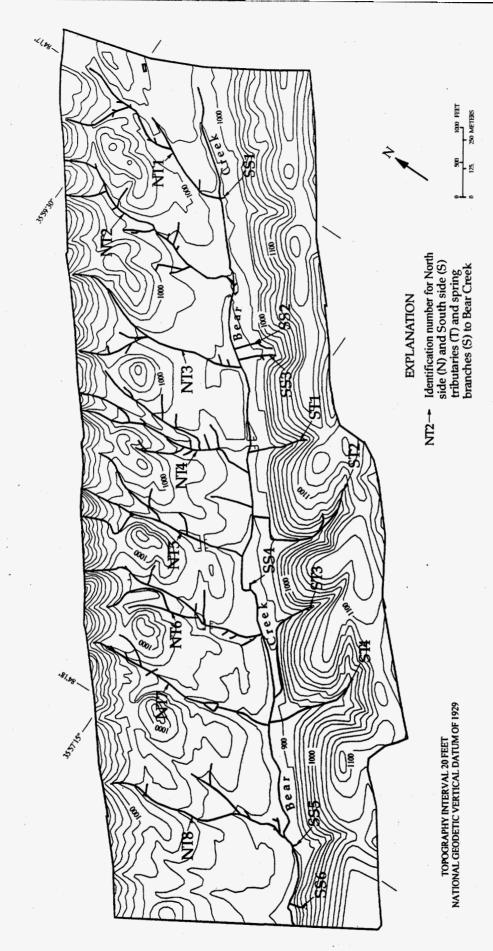


Figure 2. Stream locations and identification numbers for Bear Creek tributaries.

4 Gaining, Losing, and Dry Stream Reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994 Discharge measurements along the south tributaries ST1, ST2, and ST4 were mostly zero with the exception of ST3 (table 1, plate 1). Discharge measurements along ST3 ranged from less than 0.02 to 0.44 ft³/s. Stream reaches along ST3 were gaining flow and losing flow in the range of 0.07 to 0.36 ft³/s (table 2). One dry stream reach was observed along ST2. The south spring tributaries, SS1 through SS6, which may contribute flow to Bear Creek, were mostly single sites with discharge measurements in the range of 0.01 to 0.44 ft³/s (table 1). A section of south spring tributary SS2 had a gain in flow of 0.03 ft³/s (table 2).

Low Base Flow

Discharge measurements along upper Bear Creek and its tributaries were collected during low base flow from September 9 through September 29, 1994 (table 1, plate 1). Discharge measurements along Bear Creek ranged from 0 to 0.29 ft³/s. Gaining and losing stream reaches occurred along this section of Bear Creek (table 3). Streamflow gains and losses

along Bear Creek were generally in the range of 0.01 to 0.10 ft³/s. The section of Bear Creek near NT4, NT5, and NT6 remained dry. One gaining stream reach along Bear Creek near NT8 had an increase in flow of 0.15 ft³/s.

Most sites on tributaries north of Bear Creek were dry or had flow of 0.01 ft³/s. Only one site on NT8 had a discharge of 0.02 ft³/s (table 1, plate 1). North tributaries NT1, NT4, and NT5 had gains and losses in flow of 0.01 ft³/s. North tributaries NT6 and NT8 had gains and losses of 0.02 ft³/s.

South tributaries ST1, ST2, and ST4 remained dry during low base flow and ST3 had two discharge measurements of 0.03 and 0.13 ft³/s (table 1, plate 1). Two gaining reaches occurred along ST3. The south spring tributaries SS1, SS4, and SS6 were dry. South spring tributaries SS2, SS3, and SS5 had discharges of 0.02 ft³/s, 0.01 ft³/s, and 0.10 ft³/s, respectively. A stream reach along south spring SS3 was gaining flow at 0.01 ft³/s, and SS5 was a contributing reach to Bear Creek.

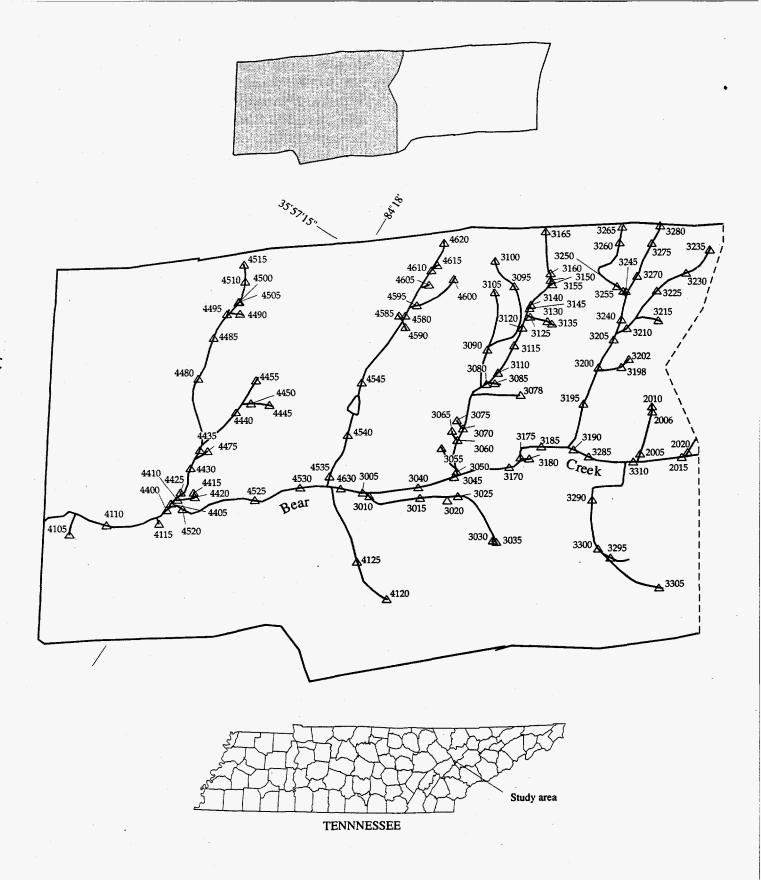


Figure 3. Location of stream sites in the study area.

Gaining, Losing, and Dry Stream Reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994

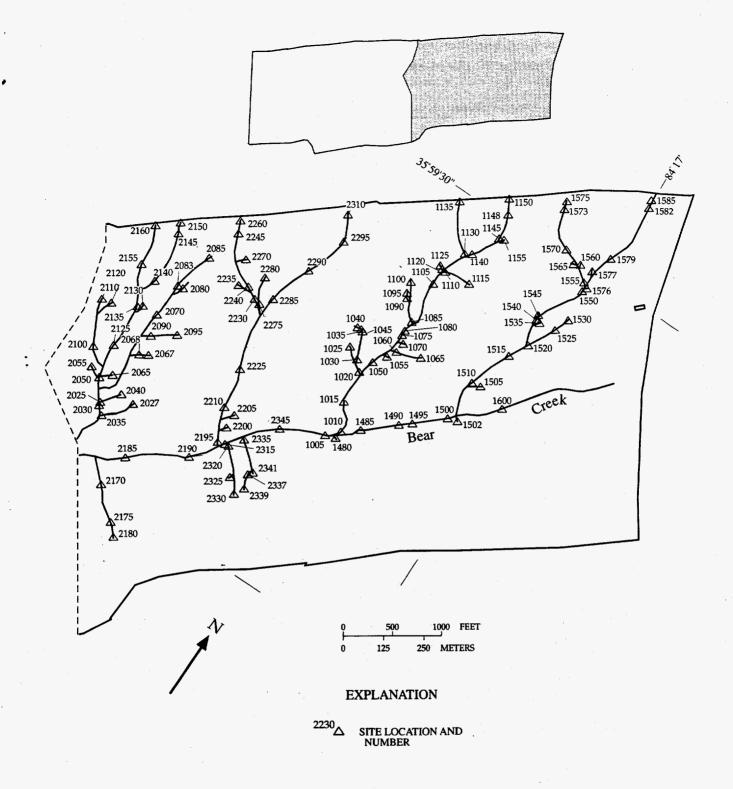


Figure 3. Location of stream sites in the study area—Continued.

Table 1. Discharge data during high base flow, March 14 through March 19, 1994, and low base flow, September 9 through September 29, 1994 at Bear Creek Valley, Oak Ridge, Tennessee

[All discharge values in cubic feet per second; HBF, high base flow; LBF, low base flow]

Site	Dischar	rge	Site	Discha	rge	Site	Dischar	rge
number -	HBF	LBF	number	HBF	LBF	number	HBF	LBF
Bear Creek			Tributaries to			North Tributar	y 3 (NT3)	
1490	0.01	0.00	1560	0.00	0.00	2310	0.00	0.00
1480	0.16	0.00	1555	0.04	0.00	2295	0.04	0.00
1600	0.22	0.02	1545	0.00	0.00	2290	0.05	0.00
1500	0.30	0.01	1535	0.00	0.00	2285	0.04	0.00
1495	0.31	0.02	1530	0.00	0.00	2225	0.03	0.00
3310	0.36	0.00	1525	0.01	0.00	2210	1.10	0.00
3040	0.39	0.00	1520	0.00	0.00	2195	1.16	0.00
3285	0.40	0.00	1505	0.01	0.00	•		
3190	0.14	0.00				Tributaries to	NT3	
2345	0.44	0.02	North Tributa	ry 2 (NT2)		2280	0.01	0.00
1485	0.44	0.04	1155	0.02	0.00	2275	0.01	0.00
3185	0.50	0.00	1140	0.03	0.00	2270	0.01	0.00
1005	0.57	0.02	1105	0.16	0.00	2260	0.00	0.00
2015	0.64	0.00	1085	0.06	0.00	2245	0.02	0.00
3170	0.64	0.00	1080	0.00	0.00	2240	0.02	0.00
3045	0.69	0.00	1075	0.15	0.00	2235	0.01	0.00
2185	0.70	0.00	1070	0.00	0.00	2230	0.03	0.00
3005	0.76	0.07	1055	0.00	0.00	2205	0.00	0.00
4630	0.79	0.07	1050	0.13	0.00	2200	0.00	0.00
4525	0.80	0.00	. 1015	0.15	0.00			
4520	0.89	0.00	1010	0.16	0.00	North Tributa	ry 4 (NT4)	
2190	0.90	0.04				2135	0.07	0.00
4530	0.93	0.08	Tributaries to	NT2		2125	0.04	0.00
. 4400	1.06	0.04	1150	0.01	0.00	2050	0.00	0.00
2315	1.08	0.00	1148	0.02	0.00	2030	0.10	0.01
4110	2.01	0.29	1145	0.03	0.00	2020	0.10	0.00
			1135	0.01	0.00			
North Tributa	ry 1 (NT1)		1130	0.04	0.00	Tributaries to		
1585	0.00	0.00	1125	0.00	0.00	2160	0.01	0.01
1582	0.03	0.00	1120	0.00	0.00	2155	0.04	0.01
1579	0.02	0.00	1115	0.00	0.00	2150	0.00	0.00
1550	0.09	0.01	1110	0.01	0.00	2145	0.00	0.00
1540	0.10	0.00	1100	0.03	0.00	2140	0.01	0.00
1515	0.13	0.01	1095	0.00	0.00	2130	0.01	0.00
1510	0.14	0.00	1090	0.00	0.00	2120	0.00	0.00
			1065	0.00	0.00	2110	0.00	0.00
Tributaries to	NT1		1060	0.02	0.00	2100	0.02	0.00
1577	0.00	0.00	1045	0.01	0.00	2095	0.00	0.00
1576	0.00	0.00	1040	0.00	0.00	2090	0.00	0.00
1575	0.00	0.00	1035	0.00	0.00	2085	0.00	0.00
1573	0.00	0.00	1030	0.01	0.00	2083	0.00	0.00
1570	0.00	0.00	1025	0.01	0.00	2080	0.00	0.00
1565	0.01	0.00	1020	0.01	0.00	2070	0.00	0.00

⁶ Gaining, Losing, and Dry Stream Reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994

Table 1. Discharge data during high base flow, March 14 through March 19, 1994, and low base flow, September 9 through September 29, 1994 at Bear Creek Valley, Oak Ridge, Tennessee--continued

Site	Discharge		Site	Discha	rge	Site	Dischar	ge
number	HBF	LBF	number	HBF	LBF	number	HBF	LBF
ributaries to NT4			North Tributar	y 6 (NT6)		North Tributar	y 8 (NT8)	
2068	0.09	0.00	3110	0.02	0.00	4480	0.04	0.01
2067	0.00	0.00	3080	0.07	0.00	4475	0.00	0.02
2065	0.01	0.00	3070	0.09	0.00	4430	0.08	0.01
2055	0.00	0.00	3060	0.01	0.00	4405	0.09	0.0
2040	0.00	0.00	3050	0.08	0.00			
2035	0.00	0.00				Tributaries to	NT8	
2027	0.00	0.00	Tributaries to	NT6		4505	0.00	0.00
2025	0.00	0.00	3155	0.00	0.00	4495	0.00	0.00
			3150	0.01	0.00	4490	0.01	0.00
North Tributar	y (NT4A)		3145	0.01	0.01	4455	0.03	0.01
2010	0.00	0.00	3140	0.00	0.00	4450	0.01	0.00
2006	0.00	0.00	3135	0.00	0.00	4445	0.00	0.00
2005	0.00	0.00	3130	0.00	0.00	4440	0.01	0.01
			3120	0.01	0.00	4435	0.04	0.00
North Tributar	y 5 (NT5)		3115	0.00	0.00	4425	0.00	0.00
3280	0.03	0.00	3105	0.01	0.00	4420	0.01	0.01
3275	0.03	0.01	3100	0.01	0.00	4415	0.00	0.00
3270	0.03	0.01	3095	0.01	0.00	4410	0.02	0.01
3240 .	0.03	0.00	3090	0.01	0.00			
3200	0.12	0.00	3085	0.00	0.00	South Tributa	ry 1 (ST1)	
3195	0.10	0.00	3078	0.00	0.00	2180	0.00	0.00
3190	0.14	0.00	3075	0.01	0.00	2175	0.00	0.00
		•	3065	0.01	0.00	2170	0.00	0.00
Tributaries to	NT5		3055	0.00	0.00			
3198	0.00	0.00	•			South Tributa	ry 2 (ST2)	
3202	0.00	0.00	North Tributa	y 7 (NT7)		3305	0.00	0.00
3205	0.00	0.00	4620	0.02	0.00	3300	0.00	0.00
3210	0.03	0.00	4615	0.00	0.00	3290	0.01	0.00
3215	0.00	0.00	4610	0.02	0.00			
3225	0.00	0.00	4605	0.00	0.00	Tributaries to	ST2	
			4600	0.00	0.00	3295	0.00	0.00
Tributaries to	NT5		4595	0.06	0.00			
3265	0.00	0.00	4590	0.00	0.00	South Tributa	ıry 3 (ST3)	
3260	0.01	0.00	4585	0.00	0.00	3035	0.01	0.00
3255	0.00	0.00	4580	0.07	0.00	3025	0.37	0.00
3250	0.01	0.00	4545	0.10	0.00	3015	0.44	0.03
3245	0.01	0.00	4540	0.07	0.00	3010	0.36	0.13
32235	0.00	0.00	4535	0.06	0.00			
3230	0.00	0.00				Tributaries to	ST3	
. —		*	North Tributa	ry 8 (NT8)		3030	0.00	0.0
North Tributa	ry 6 (NT6)		4515	0.01	0.00	3020	0.00	0.0
3165	0.02	0.00	4510	0.01	0.00			
3160	0.02	0.01	4500	0.02	0.00	South Tributa	ary 4 (ST4)	
3125	0.04	0.01	4485	0.04	0.01	4125	0.00	0.0
0120	U.U-1	U. U .						

Table 1. Discharge data during high base flow, March 14 through March 19, 1994, and low base flow, September 9 through September 29, 1994 at Bear Creek Valley, Oak Ridge, Tennessee--continued

Site	Dischar	ge
number	HBF	LBF
South Tributar	ry 4 (ST4)	
4120	0.00	0.00
South Spring	1 (SS1)	
1502	0.07	0.00
South Spring	2 (SS2)	
2335	0.22	0.02
2341	0.23	0.02
Tributaries to	SS2	
2337	0.06	0.00
2339	0.03	0.00
South Spring	3 (SS3)	
2320	0.17	0.01
2330	0.12	0.00
Tributaries to	SS3	
2325	0.05	0.00
South Spring	4 (SS4)	
3175	0.13	0.00
3180	0.13	0.00
South Spring	5 (SS5)	
4115	0.44	0.10
South Spring	6 (SS6)	
4105	0.01	0.00

Table 2. Stream reach classification during high base flow at Bear Creek Valley, Oak Ridge, Tennessee, March 14 through March 19, 1994

[All discharge measurements in cubic feet per second]

Site		Stream reach		Si	te	Stream reach	
number		class- Change in		num	ber	class-	Change in
Upstream	Downstream	- ification	discharge		Downstream	ification	discharge
Bear Creek				North Tribut			uischarge
1600	1500	losing flow	-0.14	1565		contributing site	
1500	1495	no change in flow	0.00	1576		contributing site	
1495	1485	gaining flow	0.12	1577		contributing site	
1485	1005	losing flow	-0.44	1545		contributing site	
1005	2345	losing flow	-0.13	1540		contributing site	
2345	2315	gaining flow	0.25	1505		contributing site	
2315	2190	losing flow	-1.34			. •	
2190	2185	losing flow	-0.20	North Tribut	ary 2 (NT2)	*	
2185	2015	losing flow	-0.16	1150	1148	gaining flow	0.01
2015	3310	losing flow	-0.28	1148	1145	gaining flow	0.01
				1155	1140	losing flow	-0.02
3310	3285	no change in flow	0.00	1135	1130	gaining flow	0.03
3285	3190	losing flow	-0.26	1140	1105	gaining flow	0.08
3190	3185	gaining flow	0.26				
3185	3175	losing flow	-0.37	. 1115	1110	gaining flow	0.01
3175	3170	gaining flow	0.38	1125	1120	dry	0.00
	,			1105	1080	losing flow	-0.22
3170	3045	no change in flow	0.00	1100	1085	gaining flow	0.03
3045	3040	losing flow	-0.26	1095	1090	dry	0.00
3040	3005	no change in flow	0.00				
3005	4630	no change in flow	0.00	1080	1075	gaining flow	0.15
4630	4530	gaining flow	0.38	1075	1050	losing flow	-0.04
		9-		1065	1060	gaining flow	0.02
4530	4525	losing flow	-0.13	1050	1015	no change in flow	0.00
4525	4520	gaining flow	0.09	1040	1035	dry	0.00
4520	4400	gaining flow	0.17				
4400	4110	gaining flow	0.51	1045	1030	no change in flow	0.00
, ,,,,	*****	949		1025	1020	losing flow	-0.01
North Tributa	nrv 1 (NT1)			1015	1010	no change in flow	0.00
1585	1582	gaining flow	0.03	1070	 .	contributing site	
1582	1579	losing flow	-0.01	1055		contributing site	
1579	1550	gaining flow	0.03				
1575	1573	dry	0.00	North Tribut	arv 3 (NT3)		
1573	1570	dry	0.00	2310	2295	gaining flow	0.04
1070	10.0		0.00	2295	2290	no change in flow	0.00
1570	1555	gaining flow	0.03	2290	2285	no change in flow	0.00
1550	1540	no change in flow	0.00	2285	2225	losing flow	-0.05
1530	1525	gaining flow	0.01	2225	2210	gaining flow	1.07
1525	1520	losing flow	-0.01			•	
1520	1515	gaining flow	0.03	2210	2195	no change in flow	0.00
1020	1515	303	5.50	2260	2245	gaining flow	0.02
1515	1510	no change in flow	0.00	2245	2240	losing flow	-0.01
1560	1010	contributing site	-	2240	2230	no change in flow	0.00

Table 2. Stream reach classification during high base flow at Bear Creek Valley, Oak Ridge, Tennessee, March 14 through March 19, 1994--continued

[All discharge measurements in cubic feet per second]

Site		Stream reach		Si	-	Stream reach	
numi	*	class- Change in		num		class-	Change in
Upstream	Downstream	- ification	discharge	Upstream	Downstream	- ification	_
North Tributary 3 (NT3)		moation	discharge	North Tribut		incation	discharge
2280	2275	no change in flow	0.00	3200	3195	losing flow	-0.02
2270		contributing site		3265	3260	dry	0.01
2235		contributing site		3260	3255	losing flow	-0.01
2205		contributing site		3255	3250	gaining flow	0.01
2200		contributing site		3235	3230	dry	0.00
North Tribut	arv 4 (NT4)			3230	3225	dry	0.00
2150	2145	dry	0.00	3225	3210	gaining flow	0.03
2145	2140	gaining flow	0.01	3202	3198	dry	0.00
2160	2155	gaining flow	0.03	3245		contributing site	
2155	2135	gaining flow	0.02	02.10	A	continuating one	
2135	2125	losing flow	-0.04	North Tribut	any 6 (NT6)		
2133	2125	losing now	-0.04	3165	3160	no change in flow	0.00
2125	2050	losing flow	-0.07	3160	3155	losing flow	-0.02
	2030		0.00			losing flow	-0.02
2050		no change in flow		3155	3140	gaining flow	0.01
2030	2020	no change in flow	0.00	3140	3145	• •	
2110	2100	gaining flow	0.02	3145	3120	losing flow	-0.04
2085	2083	dry	0.00				0.04
,				3120	3115	losing flow	-0.01
2083	2070	dry	0.00	3115	3110	gaining flow	0.02
2095	2090	dry	0.00	3110	3080	gaining flow	0.05
2067	2068	gaining flow	0.09	3080	3070	no change in flow	0.00
2040	2035	dry	0.00	3070	3050	no change in flow	0.00
2027-	2025	_ dry	0.00				
				3100	3095	no change in flow	0.00
2080		contributing site		3105	3095	losing flow	-0.01
2130		contributing site		3135	3130	dry	0.00
2120		contributing site	, 	3130	3125	gaining flow	0.04
2055		contributing site	-	3065	3060	no change in flow	0.00
2065		contributing site					
				3150		contributing site	
North Tribut	ary 4A (NT4A)		•	3085	••	contributing site	
2010	2006	dry	0.00	3078		contributing site	
2006	2005	dry	0.00	3075		contributing site	
2000	2000	u .,	5.55	3055		contributing site	
North Tribut	tary 5 (NT5)						
3280	3275	no change in flow	0.00	North Tribu	tary 7 (NT7)		
3275	3270	no change in flow	0.00	4620	4610	no change in flow	0.00
3270	3240	losing flow	-0.02	4610	4580	no change in flow	0.00
3240	3205	losing flow	-0.06	4580	4545	gaining flow	0.03
3205	3200	gaining flow	0.12	4545	4540	losing flow	-0.03
-				4540	4535	no change in flow	0.00
				4600	4595	gaining flow	0.06

¹² Gaining, Losing, and Dry Stream Reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994

Table 2. Stream reach classification during high base flow at Bear Creek Valley, Oak Ridge, Tennessee, March 14 through March 19, 1994--continued

[All discharge measurements in cubic feet per second]

Si	te	Stream reach		Si	te	Stream reach	
num	ber	class-	Change in	num	ber	class-	Change in
Upstream	Downstream	ification	discharge			ification	discharge
North Tribut	ary 7 (NT7)			South Sprin			
4605		contributing site		2341	2335	no change in flow	0.00
4585		contributing site		2339	2337	gaining flow	0.03
4590		contributing site	. 				
				South Sprin			
North Tribut			0.00	2330	2320	no change in flow	0.00
4515	4510	no change in flow	0.00	2335		contributing site	
4510 4500	4500	gaining flow	0.01	0.40.	. 44004		
4500	4485	no change in flow	0.00	South Sprin	g 4 (SS4)	a a manthe ration at the	
4485	4480	no change in flow	0.00	3180		contributing site	
4480	4435	no change in flow	0.00	0 - 4 - 0 - 4 -	E (OOE)		
4405	4400		0.04	South Sprin	g 5 (SS5)		
4435	4430	gaining flow	0.04	4115		contributing site	
4430	4405	no change in flow	0.00	O a codia O contra	- 0 (000)		
4455	4440	losing flow	-0.03	South Sprin	g 6 (556)	and the tine site	
4445	4450	gaining flow	0.01	4105		contributing site	
4120	4410	gaining flow	0.02				
4420	4505	ma abanas in flaur	0.00				
4430	4505	no change in flow	0.00				
4490	, 	contributing site					•
4495		contributing site					
4475		contributing site	••				
4425		contributing site				•	
4415		contributing site					
	4 (074)						
South Tribut	- '	.d.m	0.00				
2180	2175	dry	0.00				
2175	2170	· dry	0.00				
South Tribut	ary 2 (ST2)						
3305	3300	dry	0.00				
3300	3290	gaining flow	0.01				
3295	-	contributing site	; 			•	
South Tribut	tary 3 (ST3)						
3035	3025	gaining flow	0.36				
3025	3015	gaining flow	0.07				
3015	3010	losing flow	-0.08				
3020		contributing site	· ·				
	•						
South Tribut	tary 4 (ST4)						
4120	4125	dry	0.00				
South Sprin	a 1 (SS1)						
1502	g 1 (001)	contributing site		•			
1302		00.,00		•			

Table 3. Stream reach classification during low base flow at Bear Creek Valley, Oak Ridge, Tennessee, September 9 through September 29, 1994

[All flow measurements in cubic feet per second]

Si	Site Stream reach				te	Stream reach	
nun	nber	class-	Change in	nun	nber	class-	Change in
Upstream	Downstream	ification	discharge	Upstream	Downstream	ification	discharge
Bear Creek				North Tributa	ary 1 (NT1)	-	
1600	1500	losing flow	-0.01	1565		contributing site	
1500	1495	gaining flow	0.01	1576		contributing site	
1495	1485	gaining flow	0.02	1577		contributing site	
1485	1005	losing flow	-0.02	1545		contributing site	
1005	2345	no change in flow	0.00	1540		contributing site	
2345	2315	losing flow	-0.05	1505		contributing site	·
2315	2190	gaining flow	0.04				
2190	2185	losing flow	-0.04	North Tributa	ary 2 (NT2)		
2185	2015	dry	0.00	1150	1148	dry	0.00
2015	3310	dry	0.00	1148	1145	dry	0.00
				1155	1140	dry	0.00
3310	3285	dry	0.00	1135	1130	dry	0.00
3285	3190	dry	0.00	1140	1105	dry	0.00
3190	3185	dry	0.00				
3185	3175	dry	0.00	1115	1110	dry	0.00
3175	3170	dry	0.00	1125	1120	dry	0.00
				1105	1080	dry	0.00
3170	3045	dry	0.00	1100	1085	dry	0.00
3045	3040	dry	0.00	1095	1090	dry	0.00
3040	3005	losing flow	-0.06				
3005	4630	no change in flow	0.00	1080	1075	dry	0.00
4630	4530	no change in flow	0.01	1075	1050	dry	0.00
		· ·		1065	1060	dry	0.00
4530	4525	losing flow	-0.08	1050	1015	dry	0.00
4525	4520	dry	0.00	1040	1035	dry	0.00
4520	4400	gaining flow	0.03			•	
4400	4110	gaining flow	0.15	1045	1030	dry	0.00
,		3-		1025	1020	dry	0.00
lorth Tributa	rv 1 (NT1)		•	1015	1010	dry	0.00
1585	1582	dry	0.00	1070		contributing site	
1582	1579	dry	0.00	1055		contributing site	
1579	1550	no change in flow	0.00			•	
1575	1573	dry	0.00	North Tribut	ary 3 (NT3)		
1573	1570	dry	0.00	2310	2295	dry	0.00
		,		2295	2290	dry	0.00
1570	1555	dry	0.00	2290	2285	dry	0.00
1550	1540	losing flow	-0.01	2285	2225	dry	0.00
1530	1525	dry	0.00	2225	2210	drý	0.00
1525	1520	dry	0.00			•	
1520	1515	gaining flow	0.01	2210	2195	dry	0.00
1020	1010	gennig non	3. 2.	2260	2245	dry	0.00
1515	1510	losing flow	-0.01	2245	2240	dry	0.00
	1510	contributing site		2240	2230	dry	0.00
1560		continuum site				- .,	7.00

¹⁴ Gaining, Losing, and Dry Stream Reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994

Table 3. Stream reach classification during low base flow at Bear Creek Valley, Oak Ridge, Tennessee, September 9 through September 29, 1994--continued

Site		Stream reach			Site	Stream reach	
number		class-	class- Change in		umber	class-	Change in
Upstream	Downstream	ification	discharge	Upstream	Downstream	ification	discharge
North Tribu	tary 3 (NT3)			North Tribu	itary 5 (NT5)		
2280	2275	dry	0.00	3260	3255	dry	0.00
2270		contributing site		3255	3250	dry	0.00
2235		contributing site		3235	3230	dry	0.00
2205	'	contributing site		3230	3225	dry	0.00
2200		contributing site		3225	3210	dry	0.00
North Tribu	tary 4 (NT4)			3202	3198	dry	0.00
2150	2145	dry	0.00	3245		contributing site	
2145	2140	dry	0.00				
2160	2155	no change in flow	0.00	North Tribu	itary 6 (NT6)		
2155	2135	losing flow	-0.01	3165	3160	gaining flow	0.01
2135	2125	dry	0.00	3160	3155	losing flow	-0.01
				3155	3140	dry	0.00
2125	2050	dry	0.00	3140	3145	gaining flow	0.01
2050	2030	gaining flow	0.01	3145	3120	losing flow	-0.02
2030	2020	losing flow	-0.01				
2110	2100	dry	0.00	3120	3115	dry	0.00
2085	2083	dry	0.00	3115	3110	dry	0.00
		•		3110	3080	dry	0.00
2083	2070	dry	0.00	3080	3070	dry	0.00
2095	2090	dry	0.00	3070	3050	dry	0.00
2067	2068	dry	0.00				
2040	2035	dry	0.00	3100	3095	dry	0.00
2027	2025	dry	0.00	3105	3095	dry	0.00
		•		3135	3130	dry	0.00
2080		contributing site		3130	3125	gaining flow	0.01
2130		contributing site	•	3065	3060	dry	0.00
2120		contributing site					
2055		contributing site		3150		contributing site	
2065		contributing site		3085		contributing site	
				3078		contributing site	
North Tribu	tary 4A (NT4A)			3075		contributing site	
2010	2006	dry	0.00	3055		contributing site	
2006	2005	dry	0.00				
		•		North Tribu	utary 7 (NT7)		
North Tribu	tary 5			4620	4610	dry	0.00
3280	3275	gaining flow	0.01	4610	4580	dry	0.00
3275	3270	no change in flow	0.00	4580	4545	dry	0.00
3270	3240	losing flow	-0.01	4545	4540	dry	0.00
3240	3205	dry	0.00	4540	4535	dry	0.00
3205	3200	dry	0.00				
		•••		4600	4595	dry	0.00
3200	3195	dry	0.00	4605		contributing site	
3265	3260	dry	0.00	4585		contributing site	

Table 3. Stream reach classification during low base flow at Bear Creek Valley, Oak Ridge, Tennessee, September 9 through September 29, 1994--continued

Site		Stream reach			Site	Stream reach	
number		r class- C		กเ	ımber	class-	Change in
Upstream	Downstream	ification	discharge	Upstream	Downstream	ification	discharge
North Tribu	itary 7 (NT7)			South Sprin			
4590		contributing site		2341	2335	no change in flow	0.00
				2339	2337	dry	0.00
North Tribu	itary 8 (NT8)		•				
4515	4510	dry	0.00	South Sprin			
4510	4500	dry	0.00	2330	2320	gaining flow	0.01
4500	4485	gaining flow	0.01	2335		contributing site	
4485	4480	no change in flow	0.00				
4480	4435	losing flow	-0.02	South Sprin	ng 4 (SS4)		
				3180		contributing site	
4435	4430	losing flow	-0.01				
4430	4405	losing flow	-0.01	South Sprin	ng 5 (SS5)		
4455	4440	no change in flow	0.00	4115		contributing site	
4445	4450	dry	0.00				
4420	4410	gaining flow	0.01	South Spri	ng 6 (SS6)		
				4105		contributing site	
4430	4405	losing flow	0.01				
4490		contributing site					
4495		contributing site					
4475		contributing site					
4425		contributing site					
4415		contributing site					
South Tribu	ıtary 1 (ST1)						
2180	2175	dry	0.00				
2175	2170	dry	0.00				
South Tribu	ıtary 2 (ST2)						
3305	3300	dry	0.00				
3300	3290	dry	0.00				
2175	••	contributing site	•				
South Tribu	ıtary 3 (ST3)					•	
3035	3025	dry	0.00				
3025	3015	gaining flow	0.03			•	,
3015	3010	gaining flow	0.10				
3020	-	contributing site					
South Tribe	utary 4 (ST4)						
4120	4125	dry	0.00				
4120	7120	ui y	3.30				
	ng 1 (884)						
South Sprii 1502	ing ((331)	contributing site	-				
1002		CONTRIBUTING SILE					

¹⁶ Gaining, Losing, and Dry Stream Reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994

SUMMARY

In 1995 the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, began a study to delineate stream reaches that were gaining flow, losing flow, or that were dry within a 1,125-acre study area which includes the uppermost part of Bear Creek and many tributaries north and south of Bear Creek. Discharge data from a seepage investigation at Bear Creek Valley, Oak Ridge, Tennessee, are presented in this report. The classification of stream reaches are based on discharge data at 229 sites along upper Bear Creek and its tributaries. These data were collected during high base flow, from March 14 through March 19, 1994, and during low base flow, from September 9 through September 29, 1994.

To identify reaches that gain or lose flow, the following criteria were used: for streamflow of less than 0.1 cubic foot per second (ft³/s), a change in flow of more than 25 percent of total flow was used to determine if the flow was increasing or decreasing; for streamflow equal to or greater than 0.1 ft³/s, a change in flow of 10 percent was used as the criterion. If two adjacent stream measurement sites had zero flow, these stream reaches were classified as dry.

During high base flow, discharge measurements for Bear Creek ranged from 0.01 to 2.01 ft³/s. Gaining and losing stream reaches occurred along Bear Creek in the range of 0.09 and 0.51 ft³/s and 0.13 to 1.34 ft³/s, respectively. No dry stream reaches were observed along Bear Creek during high base flow. The discharge measurements along the north tributaries ranged from less than 0.01 to 1.16 ft³/s. All tributaries north of Bear Creek had gaining and losing stream reaches. Gains in flow for the north tributaries were in

the range of 0.01 to 1.07 $\rm ft^3/s$, and losses in flow were in the range of 0.01 to 0.22 $\rm ft^3/s$. Discharge measurements along the south tributaries were mostly less than 0.25 $\rm ft^3/s$, with the exception of ST3 and ST5. Dry stream reaches were observed along ST1, ST2, and ST4. The south spring tributaries, SS1 through SS6, were mostly single sites with discharge measurements in the range of 0 to 0.44 $\rm ft^3/s$.

During low base flow, discharge measurements along Bear Creek ranged from 0.00 to 0.29 ft³/s. Streamflow gains and losses along Bear Creek were generally in the range of 0.01 to 0.10 ft³/s. The section of Bear Creek near NT4, NT5, and NT6 remained dry. Two stream reaches along Bear Creek near NT7 were losing flow (0.06 and 0.08 ft³/s). One gaining stream reach along Bear Creek near NT8 had an increase of flow of 0.15 ft³/s. Only one site in the north tributaries had a discharge of 0.02 ft³/s. All other sites were dry or had a discharge of 0.01 ft³/s. North tributaries NT2, NT3, and NT7 were dry. South tributaries ST1, ST2, and ST4 remained dry during low base flow, and ST3 had discharge measurements of 0.03 and 0.13 ft³/s. South spring tributaries SS2, SS3, and SS5 had discharges of 0.02 ft³/s, 0.01 ft³/s, and 0.10 ft³/s, respectively.

REFERENCES CITED

McMaster, W.M., 1967, Hydrologic data for the Oak Ridge area Tennessee: U.S. Geological Survey Water-Supply Paper 1839-N, 90 p.

Robinson, J.A., and Johnson, G.C., 1996, Results of a seepage investigation at Bear Creek Valley, Oak Ridge, Tennessee, January through September 1994: U.S. Geological Survey Open File Report 95-459, 45 p.

NOTICE

Page(s) size did not permit electronic reproduction. Information may be purchased by the general public from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161 (Area Code 703-487-4650). DOE and DOE contractors may purchase information by contacting DOE's Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831, Attn: Information Services (Area Code 423-576-8401).