17,582 research outputs found

    A Better Definition of the Kilogram

    Full text link
    This article reviews several recent proposed redefinitions of the kilogram, and compares them with respect to practical realizations, uncertainties (estimated standard deviations), and educational aspects.Comment: 10 pages, no figure

    Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements

    Get PDF
    The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles

    A Structural Investigation of Heteroleptic Lanthanide Substituted Cyclopentadienyl Complexes

    Get PDF
    The synthesis and structural authentication of novel heteroleptic lanthanide complexes supported by bulky cyclopentadienyl ligands is herein presented. Steric effects play a fundamental role in the coordination motifs.</p

    Screw dislocation in zirconium: An ab initio study

    Get PDF
    Plasticity in zirconium is controlled by 1/3 screw dislocations gliding in the prism planes of the hexagonal close-packed structure. This prismatic and not basal glide is observed for a given set of transition metals like zirconium and is known to be related to the number of valence electrons in the d band. We use ab initio calculations based on the density functional theory to study the core structure of screw dislocations in zirconium. Dislocations are found to dissociate in the prism plane in two partial dislocations, each with a pure screw character. Ab initio calculations also show that the dissociation in the basal plane is unstable. We calculate then the Peierls barrier for a screw dislocation gliding in the prism plane and obtain a small barrier. The Peierls stress deduced from this barrier is lower than 21 MPa, which is in agreement with experimental data. The ability of an empirical potential relying on the embedded atom method (EAM) to model dislocations in zirconium is also tested against these ab initio calculations

    Rheophysics of dense granular materials : Discrete simulation of plane shear flows

    Full text link
    We study the steady plane shear flow of a dense assembly of frictional, inelastic disks using discrete simulation and prescribing the pressure and the shear rate. We show that, in the limit of rigid grains, the shear state is determined by a single dimensionless number, called inertial number I, which describes the ratio of inertial to pressure forces. Small values of I correspond to the quasi-static regime of soil mechanics, while large values of I correspond to the collisional regime of the kinetic theory. Those shear states are homogeneous, and become intermittent in the quasi-static regime. When I increases in the intermediate regime, we measure an approximately linear decrease of the solid fraction from the maximum packing value, and an approximately linear increase of the effective friction coefficient from the static internal friction value. From those dilatancy and friction laws, we deduce the constitutive law for dense granular flows, with a plastic Coulomb term and a viscous Bagnold term. We also show that the relative velocity fluctuations follow a scaling law as a function of I. The mechanical characteristics of the grains (restitution, friction and elasticity) have a very small influence in this intermediate regime. Then, we explain how the friction law is related to the angular distribution of contact forces, and why the local frictional forces have a small contribution to the macroscopic friction. At the end, as an example of heterogeneous stress distribution, we describe the shear localization when gravity is added.Comment: 24 pages, 19 figure

    Handcrafted and learning-based tie point features-comparison using the EuroSDR RPAS benchmark datasets

    Get PDF
    The identification of accurate and reliable image correspondences is fundamental for Structure-from-Motion (SfM) photogrammetry. Alongside handcrafted detectors and descriptors, recent machine learning-based approaches have shown promising results for tie point extraction, demonstrating matching success under strong perspective and illumination changes, and a general increase of tie point multiplicity. Recently, several methods based on convolutional neural networks (CNN) have been proposed, but few tests have yet been performed under real photogrammetric applications and, in particular, on full resolution aerial and RPAS image blocks that require rotationally invariant features. The research reported here compares two handcrafted (Metashape local features and RootSIFT) and two learning-based methods (LFNet and Key.Net) using the previously unused EuroSDR RPAS benchmark datasets. Analysis is conducted with DJI Zenmuse P1 imagery acquired at Wards Hill quarry in Northumberland, UK. The research firstly extracts keypoints using the aforementioned methods, before importing them into COLMAP for incremental reconstruction. The image coordinates of signalised ground control points (GCPs) and independent checkpoints (CPs) are automatically detected using an OpenCV algorithm, and then triangulated for comparison with accurate geometric ground-truth. The tests showed that learning-based local features are capable of outperforming traditional methods in terms of geometric accuracy, but several issues remain: few deep learning local features are trained to be rotation invariant, significant computational resources are required for large format imagery, and poor performance emerged in cases of repetitive patterns

    Learning democracy in social work

    Get PDF
    In this contribution, we discuss the role of social work in processes of democracy. A key question in this discussion concerns the meaning of ‘the social’ in social work. This question has often been answered in a self-referential way, referring to a methodological identity of social work. This defines the educational role of social work as socialisation (be it socialisation into obedience or into an empowered citizen). However, the idea of democracy as ‘ongoing experiment’ and ‘beyond order’ challenges this methodological identity of social work. From the perspective of democracy as an ‘ongoing experiment’, the social is to be regarded as a platform for dissensus, for ongoing discussions on the relation between private and public issues in the light of human rights and social justice. Hence, the identity of social work cannot be defined in a methodological way; social work is a complex of (institutionalized) welfare practices, to be studied on their underlying views on the ‘social’ as a political and educational concept, and on the way they influence the situation of children, young people and adults in society

    Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy

    Full text link
    In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This optical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of k published by the CODATA with a relative accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of with an accuracy of a few ppm.Comment: 22 pages, 11 figure

    Surfaces roughness effects on the transmission of Gaussian beams by anisotropic parallel plates

    Full text link
    Influence of the plate surfaces roughness in precise ellipsometry experiments is studied. The realistic case of a Gaussian laser beam crossing a uniaxial platelet is considered. Expression for the transmittance is determined using the first order perturbation theory. In this frame, it is shown that interference takes place between the specular transmitted beam and the scattered field. This effect is due to the angular distribution of the Gaussian beam and is of first order in the roughness over wavelength ratio. As an application, a numerical simulation of the effects of quartz roughness surfaces at normal incidence is provided. The interference term is found to be strongly connected to the random nature of the surface roughness.Comment: 18 pages, Journal of Physics D: Applied Physics, volume 36, issue 21, pages 2697 - 270
    • …
    corecore