2,304 research outputs found

    Evaluating a workspace's usefulness for image retrieval

    Get PDF
    Image searching is a creative process. We have proposed a novel image retrieval system that supports creative search sessions by allowing the user to organise their search results on a workspace. The workspace’s usefulness is evaluated in a task-oriented and user-centred comparative experiment, involving design professionals and several types of realistic search tasks. In particular, we focus on its effect on task conceptualisation and query formulation. A traditional relevance feedback system serves as a baseline. The results of this study show that the workspace is more useful in terms of both of the above aspects and that the proposed approach leads to a more effective and enjoyable search experience. This paper also highlights the influence of tasks on the users’ search and organisation strategy

    Further constraints on electron acceleration in solar noise storms

    Full text link
    We reexamine the energetics of nonthermal electron acceleration in solar noise storms. A new result is obtained for the minimum nonthermal electron number density required to produce a Langmuir wave population of sufficient intensity to power the noise storm emission. We combine this constraint with the stochastic electron acceleration formalism developed by Subramanian & Becker (2005) to derive a rigorous estimate for the efficiency of the overall noise storm emission process, beginning with nonthermal electron acceleration and culminating in the observed radiation. We also calculate separate efficiencies for the electron acceleration -- Langmuir wave generation stage and the Langmuir wave -- noise storm production stage. In addition, we obtain a new theoretical estimate for the energy density of the Langmuir waves in noise storm continuum sources.Comment: Accepted for publication in Solar Physic

    Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities

    Get PDF
    We analyze the signal processing required for the optimal detection of a stochastic background of gravitational radiation using laser interferometric detectors. Starting with basic assumptions about the statistical properties of a stochastic gravity-wave background, we derive expressions for the optimal filter function and signal-to-noise ratio for the cross-correlation of the outputs of two gravity-wave detectors. Sensitivity levels required for detection are then calculated. Issues related to: (i) calculating the signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii) performing the data analysis in the presence of nonstationary detector noise, (iii) combining data from multiple detector pairs to increase the sensitivity of a stochastic background search, (iv) correlating the outputs of 4 or more detectors, and (v) allowing for the possibility of correlated noise in the outputs of two detectors are discussed. We briefly describe a computer simulation which mimics the generation and detection of a simulated stochastic gravity-wave signal in the presence of simulated detector noise. Numerous graphs and tables of numerical data for the five major interferometers (LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. The treatment given in this paper should be accessible to both theorists involved in data analysis and experimentalists involved in detector design and data acquisition.Comment: 81 pages, 30 postscript figures, REVTE

    Local structure of the set of steady-state solutions to the 2D incompressible Euler equations

    Get PDF
    It is well known that the incompressible Euler equations can be formulated in a very geometric language. The geometric structures provide very valuable insights into the properties of the solutions. Analogies with the finite-dimensional model of geodesics on a Lie group with left-invariant metric can be very instructive, but it is often difficult to prove analogues of finite-dimensional results in the infinite-dimensional setting of Euler's equations. In this paper we establish a result in this direction in the simple case of steady-state solutions in two dimensions, under some non-degeneracy assumptions. In particular, we establish, in a non-degenerate situation, a local one-to-one correspondence between steady-states and co-adjoint orbits.Comment: 81 page

    Near-threshold measurement of the 4He(g,n) reaction

    Get PDF
    A near-threshold 4He(g,n) cross-section measurement has been performed at MAX-lab. Tagged photons from 23 < Eg < 42 MeV were directed toward a liquid 4He target, and neutrons were detected by time-of-flight in two liquid-scintillator arrays. Seven-point angular distributions were measured for eight photon energies. The results are compared to experimental data measured at comparable energies and Recoil-Corrected Continuum Shell Model, Resonating Group Method, and recent Hyperspherical-Harmonic Expansion calculations. The angle-integrated cross-section data is peaked at a photon energy of about 28 MeV, in disagreement with the value recommended by Calarco, Berman, and Donnelly in 1983.Comment: 10 pages, 3 figures, some revisions, submitted to Physics Letters

    Perturbative QCD and factorization of coherent pion photoproduction on the deuteron

    Full text link
    We analyze the predictions of perturbative QCD for pion photoproduction on the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced amplitude formalism. The cluster decomposition of the deuteron wave function at small binding only allows the nuclear coherent process to proceed if each nucleon absorbs an equal fraction of the overall momentum transfer. Furthermore, each nucleon must scatter while remaining close to its mass shell. Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t), factorizes as a product of three factors: (1) the nucleon photoproduction amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum transfer, and (3) the reduced deuteron form factor, f_d(t), which according to perturbative QCD, has the same monopole falloff as a meson form factor. A comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al. [Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows good agreement between the perturbative QCD prediction and experiment over a large range of momentum transfers and center of mass angles. The reduced amplitude prediction is consistent with the constituent counting rule, p^11_T M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found to be consistent with measurements for photon lab energies E_gamma > 3 GeV at theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as version accepted by Phys Rev

    A New Relativistic High Temperature Bose-Einstein Condensation

    Get PDF
    We discuss the properties of an ideal relativistic gas of events possessing Bose-Einstein statistics. We find that the mass spectrum of such a system is bounded by μ≤m≤2M/μK,\mu \leq m\leq 2M/\mu _K, where μ\mu is the usual chemical potential, MM is an intrinsic dimensional scale parameter for the motion of an event in space-time, and μK\mu _K is an additional mass potential of the ensemble. For the system including both particles and antiparticles, with nonzero chemical potential μ,\mu , the mass spectrum is shown to be bounded by ∣μ∣≤m≤2M/μK,|\mu |\leq m\leq 2M/\mu _K, and a special type of high-temperature Bose-Einstein condensation can occur. We study this Bose-Einstein condensation, and show that it corresponds to a phase transition from the sector of continuous relativistic mass distributions to a sector in which the boson mass distribution becomes sharp at a definite mass M/μK.M/\mu _K. This phenomenon provides a mechanism for the mass distribution of the particles to be sharp at some definite value.Comment: Latex, 22 page

    Delivering information and brief advice on alcohol (IBA) in social work and social care settings: an exploratory study

    Get PDF
    Social workers and practitioners working in social care are potentially key players in the prevention of alcohol-related harm and harm reduction for people using services and their carers. This requires attention to workforce development alongside the selection of appropriate tools to support prevention strategies. We report findings from a UK exploratory study into the potential of using Identification and Brief Advice (IBA) as a tool for screening and prevention in social work and social care settings. Thirty-six social workers and social care practitioners attended one of two training workshops on IBA in the South East of England. Pre and post-workshop surveys (n = 35 and n = 20, respectively) and four post-workshop focus groups (n = 36) were conducted with participants to explore the application of IBA taking into account the paradigmatic shift towards prevention and holistic approaches indicated in recent UK legislation and policy. Four themes emerged from the findings: (1) perceptions of the social work/social care role in responding to alcohol problems, (2) ethical concerns, (3) time conflicts and problems of delivering IBA and (4) the role of training. Further studies are needed to evaluate the effectiveness of motivational techniques and tools that social workers can use to promote preventative practise for alcohol-related harm. Different strategies are required to engage and support those working in social care to increase proactive engagement with problematic alcohol use in everyday practise settings
    • …
    corecore