20,462 research outputs found

    A New Leadership Development Model for Nursing Education

    Get PDF
    Background Leadership competency is required throughout nursing. Students have difficulty understanding leadership as integral to education and practice. A consistent framework for nursing leadership education, strong scholarship and an evidence base are limited. Purpose To establish an integrated leadership development model for prelicensure nursing students that recognizes leadership as a fundamental skill for nursing practice and promotes development of nursing leadership education scholarship. Method Summarizing definitions of nursing leadership, conceptualizing leadership development capacity through reviewing trends, and synthesizing existing leadership theories through directed content analysis. Discussion Nine leadership skills form the organizing structure for the Nursing Leadership Development Model. Leadership identity development is supported via dimensions of knowing, doing, being and context. Conclusion The Nursing Leadership Development Model is a conceptual map offering a structure to facilitate leadership development within prelicensure nursing students, promoting student ability to internalize leadership capacity and apply leadership skills upon entry to practic

    Spontaneous Raman scattering for simultaneous measurements of in-cylinder species

    Get PDF
    A technique for multi-species mole fraction measurement in internal combustion engines is described. The technique is based on the spontaneous Raman scattering. It can simultaneously provide the mole fractions of several species of N-2, O-2, H2O, CO2 and fuel. Using the system, simultaneous measurement of air/fuel ratio and burnt residual gas are carried out during the mixture process in a Controlled Auto Ignition (CAI) combustion engine. The accuracy and consistency of the measured results were confirmed by the measured air fuel ratio using an exhaust gas analyzer and independently calculated mole fraction values. Measurement of species mole fractions during combustion process has also been demonstrated. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

    The transition from a coherent optical vortex to a Rankine vortex: beam contrast dependence on topological charge

    Get PDF
    Spatially coherent helically phased light beams carry orbital angular momentum (OAM) and contain phase singularities at their centre. Destructive interference at the position of the phase singularity means the intensity at this point is necessarily zero, which results in a high contrast between the centre and the surrounding annular intensity distribution. Beams of reduced spatial coherence yet still carrying OAM have previously been referred to as Rankine vortices. Such beams no longer possess zero intensity at their centre, exhibiting a contrast that decreases as their spatial coherence is reduced. In this work, we study the contrast of a vortex beam as a function of its spatial coherence and topological charge. We show that beams carrying higher values of topological charge display a radial intensity contrast that is more resilient to a reduction in spatial coherence of the source

    Experimental Study of Parametric Autoresonance in Faraday Waves

    Full text link
    The excitation of large amplitude nonlinear waves is achieved via parametric autoresonance of Faraday waves. We experimentally demonstrate that phase locking to low amplitude driving can generate persistent high-amplitude growth of nonlinear waves in a dissipative system. The experiments presented are in excellent agreement with theory.Comment: 4 pages, 4 eps figures, to appear in Phys. Rev. Let

    EPR-based ghost imaging using a single-photon-sensitive camera

    Get PDF
    Correlated photon imaging, popularly known as ghost imaging, is a technique whereby an image is formed from light that has never interacted with the object. In ghost imaging experiments, two correlated light fields are produced. One of these fields illuminates the object, and the other field is measured by a spatially resolving detector. In the quantum regime, these correlated light fields are produced by entangled photons created by spontaneous parametric down-conversion. To date, all correlated photon ghost imaging experiments have scanned a single-pixel detector through the field of view to obtain spatial information. However, scanning leads to poor sampling efficiency, which scales inversely with the number of pixels, N, in the image. In this work, we overcome this limitation by using a time-gated camera to record the single-photon events across the full scene. We obtain high-contrast images, 90%, in either the image plane or the far field of the photon pair source, taking advantage of the Einstein–Podolsky–Rosen-like correlations in position and momentum of the photon pairs. Our images contain a large number of modes, >500, creating opportunities in low-light-level imaging and in quantum information processing

    Understanding the Role of Relationship Maintenance in Enduring Couple Partnerships in Later Adulthood

    Get PDF
    Intimate relationships in later adulthood are understudied despite their positive association with health and well-being. This cross-sectional mixed methods study sought to redress this gap by investigating relationship maintenance in later adulthood. Our international sub-sample comprised 1,565 participants aged 55 + and in an ongoing relationship. Results from hierarchical multiple regression indicated that overall happiness with the relationship had the largest effect size on relationship maintenance, with 53% of the variance explained. Content analyses of open-ended questions identified companionship and laughter as some of the “best liked” aspects of the relationship. Housework/cooking and saying “I love you” were among the behaviors that made participants feel appreciated. Results illustrated the types of maintenance behaviors adults in later adulthood who are in enduring partnerships employ

    Trigonometric parallaxes of young field L dwarfs

    Full text link
    (Abridged) We aim to determine the trigonometric parallaxes and proper motions of a sample of ten field L0-L5 dwarfs with spectroscopic evidence for low-gravity atmospheres. We obtained J and Ks imaging data using 2-4-m class telescopes with a typical cadence of one image per month between 2010 January and 2012 December. We also obtained low resolution optical spectra (R~300, 500-1100 nm) using the 10-m GTCs to assess the presence of lithium absorption in four targets and confirm their young age. Trigonometric parallaxes and proper motions were derived to typical accuracies of 1 mas and +/-10 mas/yr. All ten L dwarfs have large motions, and are located at distances between 9 and 47 pc. They lie above and on the sequence of field dwarfs in the absolute J and K_s magnitude versus spectral type and luminosity versus Teff diagrams, implying ages similar to or smaller than those typical of the field. The detection of atomic lithium in the atmosphere of 2MASS J00452143+1634446 is reported for the first time. Three dwarfs have locations in the HR diagram indicative of old ages and high masses consistent with the observed lithium depletion previously published. We did not find evidence for the presence of astrometric companions with minimum detectable masses typically >=25 Mjup and face-on, circular orbits with periods between 60-90 d and 3 yr around eight targets. The astrometric and spectroscopic data indicate that about 60-70% of the field L-type dwarfs in our sample with evidence for low-gravity atmospheres are indeed young-to-intermediate-age brown dwarfs of the solar neighborhood with expected ages and masses in the intervals 10-500 Myr and 11-45 Mjup. The peaked-shape of the H-band spectra of L dwarfs, a signpost of youth, appears to be present up to ages of 120-500 Myr and intermediate-to-high gravities.Comment: Accepted for publication in A&

    Optically controlled grippers for manipulating micron-sized particles

    Get PDF
    We report the development of a joystick controlled gripper for the real-time manipulation of micron-sized objects, driven using holographic optical tweezers (HOTs). The gripper consists of an arrangement of four silica beads, located in optical traps, which can be positioned and scaled in order to trap an object indirectly. The joystick can be used to grasp, move (lateral or axial), and change the orientation of the target object. The ability to trap objects indirectly allows us to demonstrate the manipulation of a strongly scattering micron-sized metallic particle

    Universal properties of boundary and interface charges in continuum models of one-dimensional insulators

    Get PDF
    We study single-channel continuum models of one-dimensional insulators induced by periodic potential modulations which are either terminated by a hard wall (the boundary model) or feature a single region of dislocations and/or impurity potentials breaking translational invariance (the interface model). We investigate the universal properties of excess charges accumulated near the boundary and the interface, respectively. We find a rigorous analytic proof for the earlier observed linear dependence of the boundary charge on the phase of the periodic potential modulation as well as extend these results to the interface model. The linear dependence on the phase shows a universal value for the slope and is intersected by discontinuous jumps by plus or minus one electron charge at the phase points where localized states enter or leave a band of extended states. Both contributions add up such that the periodicity of the excess charge in the phase over a 2π cycle is maintained. While in the boundary model this property is usually associated with the bulk-boundary correspondence, in the interface model a correspondence of scattering state and localized state contributions to the total interface charge are unveiled on the basis of the so-called nearsightedness principle
    • 

    corecore