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The transition from a coherent optical vortex to a Rankine vortex: beam contrast

dependence on topological charge
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School of Physics and Astronomy, University of Glasgow, Glasgow, UK

ABSTRACT

Spatially coherent helically phased light beams carry orbital angular momentum (OAM) and contain
phase singularities at their centre. Destructive interference at the position of the phase singularity
means the intensity at this point is necessarily zero, which results in a high contrast between the
centre and the surrounding annular intensity distribution. Beams of reduced spatial coherence yet
still carrying OAM have previously been referred to as Rankine vortices. Such beams no longer
possess zero intensity at their centre, exhibiting a contrast that decreases as their spatial coherence
is reduced. In this work, we study the contrast of a vortex beam as a function of its spatial coherence
and topological charge. We show that beams carrying higher values of topological charge display a
radial intensity contrast that is more resilient to a reduction in spatial coherence of the source.

1. Introduction

Spatially coherent light beams containing phase singular-
ities are used within optical physics, where their angular
momentum and/or their annular intensity cross-section
lead to interesting effects (1-4). Of particular prominence
are those beams with helical phase-fronts described by a
term exp(if¢), where ¢ is the azimuthal angle within
the beam and ¢, the topological charge, is an integer
describing the number of intertwined helical phase sur-
faces, i.e. the rotational symmetry of the complex field.
These helically phased beams carry an orbital angular
momentum (OAM) of £% per photon, in addition to the
photons intrinsic spin angular momentum (5, 6).

A common method for generating helically phased
beams is to illuminate a diffraction grating containing a
fork dislocation with a spatially coherent Gaussian beam
thereby generating a vortex beam in the first diffraction
order (7). A forked-diffraction grating of this type is
effectively an off-axis hologram of a spiral phase plate
formed from a glass disc with a thickness that increases
with azimuthal angle, such that a plane-wave, when trans-
mitted through the plate, acquires helical phase-fronts.
The hologram grating to be displayed on a spatial light
modulator (SLM) to modulate the phase of the first-order
pattern is the following:
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where x and y are the Cartesian coordinates from the
centre of the incident beam on the SLM and A is the
grating period.

When using a light source of reduced spatial coher-
ence, the contrast of the resulting optical vortex is also
reduced. If one seeks to utilize the optical vortex it is usual
to introduce a spatial filter prior to the vortex mask, such
as to restrict the illumination source to a single transverse
mode, albeit at the expense of optical throughput (8). In
this work, we consider relaxing the degree of spatial fil-
tering so that multiple transverse modes are transmitted.
We study the trade-off between the observed contrast of
the vortex centre and transmitted intensity as a function
of the spatial coherence and the azimuthal index of the
vortex filter.

Swartzlander et al. studied the action of a spiral phase
plate when the spatial coherence of the illumination is
reduced, resulting in a so-called ‘Rankine’ vortex rather
than a coherent vortex beam (8). The term Rankine
vortex first originated in fluid dynamics (9): a Rankine
vortex-type flow-field possesses two regions of differ-
ing rotational character. Below a specific radius, viscous
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forces ensure there is no slippage between fluid layers,
i.e. the entire region rotates like a solid object, and the
tangential flow velocity is proportional to the radius r.
At distances above this specific radius, viscous friction
between fluid layers is overcome and slippage between
the layers occurs. In this region, the tangential velocity is
inversely proportional to r. An optical Rankine vortex is
created by imparting a helical phase delay onto a beam
of reduced spatial-coherence length (10). By consider-
ing illumination of reduced spatial-coherence as a lateral
distribution of a multitude of sources, incoherent with
respect to each other, one is able to describe the resulting
Rankine vortex as the incoherent sum of many helically
phased beams, slightly displaced with respect to the beam
axis and indeed each other (11, 12). Studies of partially
coherent vortices have also been extended to consider
their cross-correlation functions (13).

Analogously to the fluidic case, an optical Rankine
vortex also exhibits two regions of differing character, in
this case relating to the directional energy flux density
(which can be described by the Poynting vector, S). For
the case of a spatially coherent vortex beam, the azimuthal
component of the Poynting vector is given by: S, =
(So?)/(kor), where ko is the wavenumber 27 /A and r
the radial distance from the centre of the vortex (i.e.
proportional to 1/7) (14). In contrast, an optical Rankine
vortex exhibits a time-averaged expectation value for S,
that for small r is proportional to r, whilst approximating
to 1/r for large r (i.e. the same as the purely coherent
optical vortex case). It is therefore clear that Rankine
vortices no longer exhibit a point of zero intensity on
the beam axis, and so the contrast across its transverse
intensity profile is reduced.

Beams containing Rankine vortices are relevant to
applications of the OAM of light under conditions of
turbulence or other time-varying aberrations (15), for
example, optical communication, imaging and optical
micromanipulation (16). We also note that the study of
spiral phase filters, as applied to light of finite spatial
coherence, is closely related to both spiral phase micro-
scopy (17, 18) and optical vortex coronagraphs (19).

In this work, we ask a simple question: ‘How do the
intensity contrast and transmitted power of a vortex beam
vary for different values of £, as the degree of spatial filter-
ing of a partially coherent source is changed?’

2. Experiment

The experimental apparatus used in this present study
is shown in Figure 1. Our partially spatially coherent
source is a Schell-model source, consisting of a Gaussian
spot of laser light focused on a continuously rotating
ground-glass plate (RGP) and followed by a compound

lens (x5 microscope objective) placed at its effective focal
length away from the RGP (20). We use an adjustable
aperture to control the degree of spatial filtering of our
partially coherent source. More specifically, the output
from a HeNe laser is focused onto the RGP (which acts
as a diffuser) and the transmitted light is collimated and
coupled into a step-index multi-mode optical fibre, with a
core diameter of 50 um. The output of this fibre is imaged
onto an aperture, the size of which can be adjusted, so
that one or more optical speckles are transmitted. The
number of speckles transmitted by the aperture is related
to the number of transverse modes in the transmitted
light. The spatial filtering of the partially coherent output
of the multi-mode fibre controls the degree of spatial
coherence of the light. The light transmitted through this
aperture is again re-collimated and used to illuminate an
SLM, positioned in the far-field of the fibre facet and
acting as a programmable diffractive optical element,
suitable for implementing the forked-diffraction grat-
ing. Finally, a 16-bit dynamic-range camera (Camera
1, HAMAMATSU, ORCA-flash4.0) is positioned in the
far-field of the SLM so that the resulting beam cross-
section can be imaged and recorded. For ease of align-
ment and comparison to the spatially coherent case, the
multi-mode fibre can be replaced with a single-mode
fibre, yielding a high fidelity helically phased beam at
Camera 1.

3. Results

In order to relate the contrast of our Rankine beams to
the number of speckle grains transmitted through the
system, we recorded two sets of data. The first set, shown
in Figure 2, consisted of the images recorded by Camera 1.
We used them to calculate the contrast, C, of the vortex
beams, C = (Imax — Imin)/ (Imax 4 Imin ), Where I,y is the
signal in the bright annular region and I y,i, is the intensity
in the middle, dark regions. These images highlight the
transition from a pure optical vortex (Figure 2(a), (d)
and (g)) to a Rankine vortex for three increasing values
of £. Figure 2(b), (e) and (h) correspond to a ~ 50%
reduction in contrast, whereas Figure 2(c), (f) and (i)
correspond to the lowest measured contrast.

The second set of data was acquired from an 8-bit
dynamic-range camera (Camera 2, TELEDYNE, DALSA
Genie). We used these images for two purposes: (1) Esti-
mating the average size of a speckle grain and (2) Mea-
suring the size of the aperture. We defined the spatial
coherence length (SCL) as the Gaussian full width at
half maximum of the autocorrelated speckle-patterns,
averaged over a large number of patterns. The average
size of a grain (i.e. the SCL) was obtained by comput-
ing the autocorrelation of hundreds of speckle patterns,
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Figure 1. Experimental apparatus. A HeNe laser is focused on a rotating ground glass plate (RGP) by a 30 mm lens and coupled into
a multi-mode fibre using x5 and x 10 microscope objectives. A x 100 microscope objective and a 600 mm lens are used to reimage
the output facet of the fibre onto a varying aperture (A). This beam is demagnified using 300 mm and 60 mm lenses. A 300 mm lens
collimates the beam on the SLM, which is placed in the Fourier plane (FP) of the aperture. A further 1330 mm lens collects the 15
diffraction order from the SLM and images the aperture on to Camera 1, which is itself in the FP of the SLM. The inset on the left shows
the OAM pattern for different ¢ values for the single-mode case, as recorded by Camera 1, whereas the inset on the right shows a
stationary speckle pattern on the plane of the aperture, as recorded by Camera 2.

Coherent Vortex Rankine Vortex ———»

Figure 2. The transition from a pure optical vortex to a Rankine vortex. The intensity patterns at Camera 1 are shown for different ¢
values, in the transition from a pure optical vortex (as shown in (a), (d) and (g)) to a Rankine vortex. A & 50% contrast reduction was
found for (b), (e) and (h), whereas (c), (f) and (i) correspond to the lowest measured contrast.
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Figure 3. Beam contrast as a function of the degree of spatial filtering (i.e. aperture diameter) of the partially coherent source for
different spiral-phase masks. The graph shows the beam contrast as a function of the aperture diameter for different values of £ and
an estimate of power (red solid line). The alternating grey and white vertical bands represent the degree of spatial filtering in terms of
the number of transmitted speckle grains through the aperture. The contrast between the central dark and the bright annular regions is
shown to decrease as the diameter of the aperture is increased. As expected the transmitted power increases with the diameter of the
aperture.
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Figure 4. Representation of the power decomposition for ¢ = 1 and £ = 3 OAM modes. (a)-(c) shows a schematic of OAM modal
decomposition for £ = 1 for progressively decreasing spatial coherence. (d) shows the intensity profile of a simulated example of a
Rankine vortex for £ = 1. (e)-(g) shows a schematic of OAM modal decomposition for £ = 3 for progressively decreasing spatial
coherence. (h) shows the intensity profile of a simulated example of a Rankine vortex for ¢ = 3.

recorded by Camera 2. For this purpose, the RGP was
used as a stationary diffuser, producing patterns like the
one shown in the right inset of Figure 1. The SCL for
our system was calculated to be 0.68 mm £ 0.07 mm. We
used this value to estimate the degree of spatial filtering
of the partially coherent source, in terms of the number
of transmitted speckle grains for different aperture sizes
and £ values. These findings are summarized in Figure 3.
An indicator of the degree of spatial filtering in multiples
of SCL for a certain aperture diameter is given by the
alternating grey and white vertical bands. The decrease
in contrast is shown to vary suddenly for Cy—; reaching
a minimum for an aperture diameter corresponding to
approximately one SCL. For Cy—; and Cy—3, the contrast
was found to be more resilient, resulting in a &~ 50%
reduction, respectively, for three and six SCLs. Finally, the
shaded error-bars for the contrast curves were calculated
by taking into consideration the intensity discrepancies
in the bright annular region as well as different intensities
of the neighbouring pixels around the centre.

As one would expect, the transmitted power P, de-
tected at Camera 1 was found to be proportional to the
size of the aperture, increasing in a quadratic fashion. P
is plotted in red in Figure 3 for the reader’s convenience.
As it can be observed, a reduction in contrast is linked to
an increase in transmitted power.

4, Discussion

The results show that the radial contrast of the beam is
inversely related to the degree of spatial filtering intro-
duced by the variable aperture, as the topological charge
ofthebeam increases. Figure 4 is a schematic that explains
the reasons behind this phenomenon. As the diameter
of the aperture is reduced below the average speckle
grain size, the output of the system tends to a coherent
vortex (as shown in the first column of Figure 4). The
OAM modal decomposition (also known as the OAM
spectrum) describes the relative power in different OAM
modes forming a beam. In the coherent case, all of the
power in the beam is found in a single OAM mode, as
shown schematically for £ = 1 in Figure 4(a), and for
£ = 3 in Figure 4(e).

As the diameter of the aperture is increased, so too is
the number of speckle grains that are transmitted through
the aperture, effectively reducing the degree of spatial fil-
tering. Each speckle grain can be considered as a
coherent source with a randomized relative phase. Using
this description, at the SLM plane each speckle grain
approximates a plane-wave illuminating the SLM from a
different angle. Each such plane-wave results in a
coherent vortex beam at the camera, laterally displaced
off-axis by a vector determined by the incident angle on



the SLM. When multiple speckle grains are present at one
instant, they form laterally displaced OAM beams which
interfere with one another at the plane of Camera 1.
The OAM spectra of such a field exhibit a spread into
the neighbouring OAM modes, as shown schematically
for £ = 1 in Figure 4(b), and for £ = 3 in Figure 4(f).
The fields shown in the inset of Figure 4(b) and (f) are
simulations representing one member of an ensemble of
interference patterns, which in our experiment can be
observed when the RGP is stationary. Further increasing
the size of the aperture decreases the amount of spatial
filtering, allowing the transmission of more speckle grains
and therefore exacerbates the spreading of the OAM
decomposition. This is illustrated schematically in Figure
4(c) and (g).

When the RGP is rotating, Camera 1 measures the
time-averaged intensity distribution of the ensemble.
Temporal averaging causes the central region of the beam
to have a non-zero intensity, when the aperture is larger
than the average speckle grain size. At the centre of the
Rankine vortex, the time-averaged azimuthal energy flow
and momentum are proportional to r. In terms of radial
contrast, any power diverted to the £ = 0 mode of the
time-averaged OAM spectra results in a non-zero on-axis
intensity at the centre of the vortex, and consequently in a
lower contrast value. For a given aperture diameter, more
power is spread into the £ = 0 mode for lower values
of topological charge. This effect is depicted in Figure
4(b) and (f), where the £ = 1 case exhibits more power
diverted to the £ = 0 mode than the £ = 3 case. The last
column of Figure 4 shows examples of simulated tem-
porally incoherent sum of approximately five-hundred
individual members of the ensemble, for ¢ = 1and ¢ = 3.
The intensity profiles of the resulting Rankine vortices are
plotted in
Figure 4(d) and (h).

5. Conclusions

We have investigated the transition from a purely
helically phased beam to a Rankine vortex, as the degree
of spatial coherence of the illumination was gradually
decreased by allowing more speckle grains to propagate
through the system. We have shown that for higher values
of topological charge, the radial intensity contrast of a
beam is more resilient to a reduction in spatial coherence
of the source. This can be understood by considering
the instantaneous OAM modal-decomposition of one
member of the ensemble of light fields that form the beam
(21, 22). When an OAM beam is slightly displaced oft-
axis, power is spread into neighbouring modes of the
OAM decomposition. Light can only be transferred to
the central on-axis region of the beam if power is spread
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into the £ = 0 mode (as all others have zero intensity
at their centre). Therefore in the case of an averaged
ensemble, beams of higher ¢ are found to spread less
power into the £ = 0 mode, for a given reduction of
spatial coherence. We believe this effect to be relevant
to light-starved applications, where one wishes to reduce
the degree of spatial filtering required. Especially at high
£-values, a significant increase in illumination flux is
achievable with only a modest reduction in contrast. Such
a trade-off may be applicable within low-light imaging
applications in either classical (17) or quantum domains
(18).
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