325 research outputs found

    Down-regulation of the Lamin A/C in neuroblastoma triggers the expansion of tumor initiating cells

    Get PDF
    Tumor-initiating cells constitute a population within a tumor mass that shares properties with normal stem cells and is considered responsible for therapy failure in many cancers. We have previously demonstrated that knockdown of the nuclear envelope component Lamin A/C in human neuroblastoma cells inhibits retinoic acid-mediated differentiation and results in a more aggressive phenotype. In addition, Lamin A/C is often lost in advanced tumors and changes in the nuclear envelope composition occur during tumor progression. Based on our previous data and considering that Lamin A/C is expressed in differentiated tissues, we hypothesize that the lack of Lamin A/C could predispose cells toward a stem-like phenotype, thus influencing the development of tumor-initiating cells in neuroblastoma. This paper demonstrates that knockdown of Lamin A/C triggers the development of a tumor-initiating cell population with self-renewing features in human neuroblastoma cells. We also demonstrates that the development of TICs is due to an increased expression of MYCN gene and that in neuroblastoma exists an inverse relationship between LMNA and MYCN expression

    The impact of environmental factors in influencing epigenetics related to oxidative states in the cardiovascular system

    Get PDF
    Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS) in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human's current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject's profile will be discussed

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Water for all : Proceedings of the 7th international scientific and professional conference Water for all

    Get PDF
    The 7th International Scientific and Professional Conference Water for all is organized to honour the World Water Day by the Josip Juraj Strossmayer University of Osijek, European Hygienic Engineering & Design Group (EHEDG), Danube Parks, Croatian Food Agency, Croatian Water, Faculty of Food Technology Osijek, Faculty of Agriculture in Osijek, Faculty of Civil Engineering Osijek, Josip Juraj Strossmayer University of Osijek Department of Biology, Josip Juraj Strossmayer University of Osijek Department of Chemistry, Nature Park “Kopački rit”, Osijek- Baranja County, Public Health Institute of the Osijek- Baranja County and „Vodovod-Osijek“ -water supply company in Osijek. The topic of World Water Day 2017 was "Wastewater" emphasizing the importance and influence of wastewater treatments on global environment. The international scientific and professional conference Water for all is a gathering of scientists and experts in the field of water management, including chemists, biologists, civil and agriculture engineers, with a goal to remind people about the significance of fresh water and to promote an interdisciplinary approach and sustainability for fresh water resource management. The Conference has been held since 2011. About 300 scientists and engineers submitted 95 abstracts to the 7th International Scientific and Professional Conference Water for all, out of which 33 was presented orally and 62 as posters. 47 full papers were accepted by the Scientific Committee. 38 full papers became the part of the this Proceedings while 9 papers were accepted for publication in Croatian Journal of Food Science and Technology and Electronic Journal of the Faculty of Civil Engineering Osijek - e-GFOS

    Surface functionalization of acrylic based photocrosslinkable resin for 3D printing applications

    No full text
    The lim­ited num­ber of resins, avail­able for stere­olith­o­g­ra­phy ap­pli­ca­tions, is one of the key dri­vers in re­search ap­plied to rapid pro­to­typ­ing. In this work an acrylic pho­tocrosslink­able resin based on methyl methacry­late (MMA), butyl methacry­late (BMA) and poly(eth­yl­ene gly­col) dimethacry­late (PEGDA) was de­vel­oped with dif­fer­ent com­po­si­tion and char­ac­ter­ized in terms of me­chan­i­cal, ther­mal and bi­o­log­i­cal be­hav­iour. Two dif­fer­ent sys­tems have been de­vel­oped us­ing dif­fer­ent amount of reagent. The in­flu­ence of every com­po­nents have been eval­u­ated on the fi­nal char­ac­ter­is­tic of the resin in or­der to op­ti­mize the fi­nal com­po­si­tion for ap­pli­ca­tions in bone tis­sue en­gi­neer­ing. The crosslinked ma­te­ri­als showed good me­chan­i­cal prop­er­ties and ther­mal sta­bil­i­ties and more­over cy­to­tox­i­c­ity test con­firms good bio­com­pat­i­bil­ity with no cy­to­toxic ef­fect on cells me­tab­o­lism. More­over two dif­fer­ent treat­ments have been pro­posed, us­ing fe­tal bovine serum (FBS) and methanol (MeOH), in or­der to im­prove cell recog­ni­tion of the sur­faces. Sam­ples threat­ened with MeOH al­low cell ad­he­sion and sur­vival, pro­mot­ing spread­ing, elon­ga­tion and fu­sion of C2C12 mus­cle my­oblast cells

    Focus on the road to modelling cardiomyopathy in muscular dystrophy

    No full text
    Alterations in the DMD gene, which codes for the protein dystrophin, cause forms of dystrophinopathies such as Duchenne muscular dystrophy, an X-linked disease. Cardiomyopathy linked to DMD mutations is becoming the leading cause of death in patients with dystrophinopathy. Since phenotypic pathophysiological mechanisms are not fully understood, the improvement and development of new disease models, considering their relative advantages and disadvantages, is essential. The application of genetic engineering approaches on induced pluripotent stem cells, such as gene editing technology, enables the development of physiologically relevant human cell models for in vitro dystrophinopathy studies. The combination of induced pluripotent stem cells-derived cardiovascular cell types and 3 D bioprinting technologies hold great promise for the study of dystrophin-linked cardiomyopathy. This combined approach enables the assessment of responses to physical or chemical stimuli, and the influence of pharmaceutical approaches. The critical objective of in vitro microphysiological systems is to more accurately reproduce the microenvironment observed in vivo. Ground-breaking methodology involving the connection of multiple microphysiological systems comprised of different tissues would represent a move toward precision body-on-chip disease modelling could lead to a critical expansion in what is known about inter-organ responses to disease and novel therapies that have the potential to replace animal models. In this review, we will focus on the generation, development, and application of current cellular, animal and potential for bio-printed models, in the study of the pathophysiological mechanisms underlying dystrophin-linked cardiomyopathy in the direction of personalized medicine

    A Focus on the Synergy of Radiomics and RNA Sequencing in Breast Cancer

    Get PDF
    Radiological imaging is currently employed as the most effective technique for screening, diagnosis, and follow up of patients with breast cancer (BC), the most common type of tumor in women worldwide. However, the introduction of the omics sciences such as metabolomics, proteomics, and molecular genomics, have optimized the therapeutic path for patients and implementing novel information parallel to the mutational asset targetable by specific clinical treatments. Parallel to the “omics” clusters, radiological imaging has been gradually employed to generate a specific omics cluster termed “radiomics”. Radiomics is a novel advanced approach to imaging, extracting quantitative, and ideally, reproducible data from radiological images using sophisticated mathematical analysis, including disease-specific patterns, that could not be detected by the human eye. Along with radiomics, radiogenomics, defined as the integration of “radiology” and “genomics”, is an emerging field exploring the relationship between specific features extracted from radiological images and genetic or molecular traits of a particular disease to construct adequate predictive models. Accordingly, radiological characteristics of the tissue are supposed to mimic a defined genotype and phenotype and to better explore the heterogeneity and the dynamic evolution of the tumor over the time. Despite such improvements, we are still far from achieving approved and standardized protocols in clinical practice. Nevertheless, what can we learn by this emerging multidisciplinary clinical approach? This minireview provides a focused overview on the significance of radiomics integrated by RNA sequencing in BC. We will also discuss advances and future challenges of such radiomics-based approach

    Unusual Association of NF-κB Components in Tumor-Associated Macrophages (TAMs) Promotes HSPG2-Mediated Immune-Escaping Mechanism in Breast Cancer

    No full text
    The cellular heterogeneity of the tumor environment of breast cancer (BC) is extremely complex and includes different actors such as neoplastic, stromal, and immunosuppressive cells, which contribute to the chemical and mechanical modification of the environment surrounding the tumor-exasperating immune-escaping mechanisms. In addition to molecular signals that make the tumor microenvironment (TME) unacceptable for the penetrance of the immune system, the physical properties of tumoral extracellular matrix (tECM) also have carved out a fundamental role in the processes of the protection of the tumor niche. Tumor-associated macrophages (TAMs), with an M2 immunosuppressive phenotype, are important determinants for the establishment of a tumor phenotype excluded from T cells. NF-κB transcription factors orchestrate innate immunity and represent the common thread between inflammation and cancer. Many studies have focused on canonical activation of NF-κB; however, activation of non-canonical signaling predicts poor survival and resistance to therapy. In this scenario, we demonstrated the existence of an unusual association of NF-κB components in TAMs that determines the deposition of HSPG2 that affects the stiffness of tECM. These results highlight a new mechanism counterbalanced between physical factors and a new perspective of mechano-pathology to be targeted to counteract immune evasion in BC
    corecore